Spaces:
Running
Running
Ffftdtd5dtft
commited on
Create akn.py
Browse files
akn.py
ADDED
@@ -0,0 +1,823 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import (
|
6 |
+
StableDiffusionPipeline,
|
7 |
+
StableDiffusionImg2ImgPipeline,
|
8 |
+
FluxPipeline,
|
9 |
+
DiffusionPipeline,
|
10 |
+
DPMSolverMultistepScheduler,
|
11 |
+
)
|
12 |
+
from transformers import (
|
13 |
+
pipeline as transformers_pipeline,
|
14 |
+
AutoModelForCausalLM,
|
15 |
+
AutoTokenizer,
|
16 |
+
GPT2Tokenizer,
|
17 |
+
GPT2Model,
|
18 |
+
AutoModel
|
19 |
+
)
|
20 |
+
from audiocraft.models import musicgen
|
21 |
+
import gradio as gr
|
22 |
+
from huggingface_hub import snapshot_download, HfApi, HfFolder
|
23 |
+
import io
|
24 |
+
import time
|
25 |
+
from tqdm import tqdm
|
26 |
+
from google.cloud import storage
|
27 |
+
import json
|
28 |
+
|
29 |
+
hf_token = os.getenv("HF_TOKEN")
|
30 |
+
gcs_credentials = json.loads(os.getenv("GCS_CREDENTIALS"))
|
31 |
+
gcs_bucket_name = os.getenv("GCS_BUCKET_NAME")
|
32 |
+
|
33 |
+
HfFolder.save_token(hf_token)
|
34 |
+
|
35 |
+
storage_client = storage.Client.from_service_account_info(gcs_credentials)
|
36 |
+
bucket = storage_client.bucket(gcs_bucket_name)
|
37 |
+
|
38 |
+
|
39 |
+
def load_object_from_gcs(blob_name):
|
40 |
+
blob = bucket.blob(blob_name)
|
41 |
+
if blob.exists():
|
42 |
+
return pickle.loads(blob.download_as_bytes())
|
43 |
+
return None
|
44 |
+
|
45 |
+
|
46 |
+
def save_object_to_gcs(blob_name, obj):
|
47 |
+
blob = bucket.blob(blob_name)
|
48 |
+
blob.upload_from_string(pickle.dumps(obj))
|
49 |
+
|
50 |
+
|
51 |
+
def get_model_or_download(model_id, blob_name, loader_func):
|
52 |
+
model = load_object_from_gcs(blob_name)
|
53 |
+
if model:
|
54 |
+
return model
|
55 |
+
try:
|
56 |
+
with tqdm(total=1, desc=f"Downloading {model_id}") as pbar:
|
57 |
+
model = loader_func(model_id, torch_dtype=torch.float16)
|
58 |
+
pbar.update(1)
|
59 |
+
save_object_to_gcs(blob_name, model)
|
60 |
+
return model
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Failed to load or save model: {e}")
|
63 |
+
return None
|
64 |
+
|
65 |
+
|
66 |
+
def generate_image(prompt):
|
67 |
+
blob_name = f"diffusers/generated_image:{prompt}"
|
68 |
+
image_bytes = load_object_from_gcs(blob_name)
|
69 |
+
if not image_bytes:
|
70 |
+
try:
|
71 |
+
with tqdm(total=1, desc="Generating image") as pbar:
|
72 |
+
image = text_to_image_pipeline(prompt).images[0]
|
73 |
+
pbar.update(1)
|
74 |
+
buffered = io.BytesIO()
|
75 |
+
image.save(buffered, format="JPEG")
|
76 |
+
image_bytes = buffered.getvalue()
|
77 |
+
save_object_to_gcs(blob_name, image_bytes)
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Failed to generate image: {e}")
|
80 |
+
return None
|
81 |
+
return image_bytes
|
82 |
+
|
83 |
+
|
84 |
+
def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
|
85 |
+
blob_name = f"diffusers/edited_image:{prompt}:{strength}"
|
86 |
+
edited_image_bytes = load_object_from_gcs(blob_name)
|
87 |
+
if not edited_image_bytes:
|
88 |
+
try:
|
89 |
+
image = Image.open(io.BytesIO(image_bytes))
|
90 |
+
with tqdm(total=1, desc="Editing image") as pbar:
|
91 |
+
edited_image = img2img_pipeline(
|
92 |
+
prompt=prompt, image=image, strength=strength
|
93 |
+
).images[0]
|
94 |
+
pbar.update(1)
|
95 |
+
buffered = io.BytesIO()
|
96 |
+
edited_image.save(buffered, format="JPEG")
|
97 |
+
edited_image_bytes = buffered.getvalue()
|
98 |
+
save_object_to_gcs(blob_name, edited_image_bytes)
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Failed to edit image: {e}")
|
101 |
+
return None
|
102 |
+
return edited_image_bytes
|
103 |
+
|
104 |
+
|
105 |
+
def generate_song(prompt, duration=10):
|
106 |
+
blob_name = f"music/generated_song:{prompt}:{duration}"
|
107 |
+
song_bytes = load_object_from_gcs(blob_name)
|
108 |
+
if not song_bytes:
|
109 |
+
try:
|
110 |
+
with tqdm(total=1, desc="Generating song") as pbar:
|
111 |
+
song = music_gen(prompt, duration=duration)
|
112 |
+
pbar.update(1)
|
113 |
+
song_bytes = song[0].getvalue()
|
114 |
+
save_object_to_gcs(blob_name, song_bytes)
|
115 |
+
except Exception as e:
|
116 |
+
print(f"Failed to generate song: {e}")
|
117 |
+
return None
|
118 |
+
return song_bytes
|
119 |
+
|
120 |
+
|
121 |
+
def generate_text(prompt):
|
122 |
+
blob_name = f"transformers/generated_text:{prompt}"
|
123 |
+
text = load_object_from_gcs(blob_name)
|
124 |
+
if not text:
|
125 |
+
try:
|
126 |
+
with tqdm(total=1, desc="Generating text") as pbar:
|
127 |
+
text = text_gen_pipeline(prompt, max_new_tokens=256)[0][
|
128 |
+
"generated_text"
|
129 |
+
].strip()
|
130 |
+
pbar.update(1)
|
131 |
+
save_object_to_gcs(blob_name, text)
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Failed to generate text: {e}")
|
134 |
+
return None
|
135 |
+
return text
|
136 |
+
|
137 |
+
|
138 |
+
def generate_flux_image(prompt):
|
139 |
+
blob_name = f"diffusers/generated_flux_image:{prompt}"
|
140 |
+
flux_image_bytes = load_object_from_gcs(blob_name)
|
141 |
+
if not flux_image_bytes:
|
142 |
+
try:
|
143 |
+
with tqdm(total=1, desc="Generating FLUX image") as pbar:
|
144 |
+
flux_image = flux_pipeline(
|
145 |
+
prompt,
|
146 |
+
guidance_scale=0.0,
|
147 |
+
num_inference_steps=4,
|
148 |
+
max_length=256,
|
149 |
+
generator=torch.Generator("cpu").manual_seed(0),
|
150 |
+
).images[0]
|
151 |
+
pbar.update(1)
|
152 |
+
buffered = io.BytesIO()
|
153 |
+
flux_image.save(buffered, format="JPEG")
|
154 |
+
flux_image_bytes = buffered.getvalue()
|
155 |
+
save_object_to_gcs(blob_name, flux_image_bytes)
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Failed to generate flux image: {e}")
|
158 |
+
return None
|
159 |
+
return flux_image_bytes
|
160 |
+
|
161 |
+
|
162 |
+
def generate_code(prompt):
|
163 |
+
blob_name = f"transformers/generated_code:{prompt}"
|
164 |
+
code = load_object_from_gcs(blob_name)
|
165 |
+
if not code:
|
166 |
+
try:
|
167 |
+
with tqdm(total=1, desc="Generating code") as pbar:
|
168 |
+
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt")
|
169 |
+
outputs = starcoder_model.generate(inputs, max_new_tokens=256)
|
170 |
+
code = starcoder_tokenizer.decode(outputs[0])
|
171 |
+
pbar.update(1)
|
172 |
+
save_object_to_gcs(blob_name, code)
|
173 |
+
except Exception as e:
|
174 |
+
print(f"Failed to generate code: {e}")
|
175 |
+
return None
|
176 |
+
return code
|
177 |
+
|
178 |
+
|
179 |
+
def test_model_meta_llama():
|
180 |
+
blob_name = "transformers/meta_llama_test_response"
|
181 |
+
response = load_object_from_gcs(blob_name)
|
182 |
+
if not response:
|
183 |
+
try:
|
184 |
+
messages = [
|
185 |
+
{
|
186 |
+
"role": "system",
|
187 |
+
"content": "You are a pirate chatbot who always responds in pirate speak!",
|
188 |
+
},
|
189 |
+
{"role": "user", "content": "Who are you?"},
|
190 |
+
]
|
191 |
+
with tqdm(total=1, desc="Testing Meta-Llama") as pbar:
|
192 |
+
response = meta_llama_pipeline(messages, max_new_tokens=256)[0][
|
193 |
+
"generated_text"
|
194 |
+
].strip()
|
195 |
+
pbar.update(1)
|
196 |
+
save_object_to_gcs(blob_name, response)
|
197 |
+
except Exception as e:
|
198 |
+
print(f"Failed to test Meta-Llama: {e}")
|
199 |
+
return None
|
200 |
+
return response
|
201 |
+
|
202 |
+
|
203 |
+
def generate_image_sdxl(prompt):
|
204 |
+
blob_name = f"diffusers/generated_image_sdxl:{prompt}"
|
205 |
+
image_bytes = load_object_from_gcs(blob_name)
|
206 |
+
if not image_bytes:
|
207 |
+
try:
|
208 |
+
with tqdm(total=1, desc="Generating SDXL image") as pbar:
|
209 |
+
image = base(
|
210 |
+
prompt=prompt,
|
211 |
+
num_inference_steps=40,
|
212 |
+
denoising_end=0.8,
|
213 |
+
output_type="latent",
|
214 |
+
).images
|
215 |
+
image = refiner(
|
216 |
+
prompt=prompt,
|
217 |
+
num_inference_steps=40,
|
218 |
+
denoising_start=0.8,
|
219 |
+
image=image,
|
220 |
+
).images[0]
|
221 |
+
pbar.update(1)
|
222 |
+
buffered = io.BytesIO()
|
223 |
+
image.save(buffered, format="JPEG")
|
224 |
+
image_bytes = buffered.getvalue()
|
225 |
+
save_object_to_gcs(blob_name, image_bytes)
|
226 |
+
except Exception as e:
|
227 |
+
print(f"Failed to generate SDXL image: {e}")
|
228 |
+
return None
|
229 |
+
return image_bytes
|
230 |
+
|
231 |
+
|
232 |
+
def generate_musicgen_melody(prompt):
|
233 |
+
blob_name = f"music/generated_musicgen_melody:{prompt}"
|
234 |
+
song_bytes = load_object_from_gcs(blob_name)
|
235 |
+
if not song_bytes:
|
236 |
+
try:
|
237 |
+
with tqdm(total=1, desc="Generating MusicGen melody") as pbar:
|
238 |
+
melody, sr = torchaudio.load("./assets/bach.mp3")
|
239 |
+
wav = music_gen_melody.generate_with_chroma(
|
240 |
+
[prompt], melody[None].expand(3, -1, -1), sr
|
241 |
+
)
|
242 |
+
pbar.update(1)
|
243 |
+
song_bytes = wav[0].getvalue()
|
244 |
+
save_object_to_gcs(blob_name, song_bytes)
|
245 |
+
except Exception as e:
|
246 |
+
print(f"Failed to generate MusicGen melody: {e}")
|
247 |
+
return None
|
248 |
+
return song_bytes
|
249 |
+
|
250 |
+
|
251 |
+
def generate_musicgen_large(prompt):
|
252 |
+
blob_name = f"music/generated_musicgen_large:{prompt}"
|
253 |
+
song_bytes = load_object_from_gcs(blob_name)
|
254 |
+
if not song_bytes:
|
255 |
+
try:
|
256 |
+
with tqdm(total=1, desc="Generating MusicGen large") as pbar:
|
257 |
+
wav = music_gen_large.generate([prompt])
|
258 |
+
pbar.update(1)
|
259 |
+
song_bytes = wav[0].getvalue()
|
260 |
+
save_object_to_gcs(blob_name, song_bytes)
|
261 |
+
except Exception as e:
|
262 |
+
print(f"Failed to generate MusicGen large: {e}")
|
263 |
+
return None
|
264 |
+
return song_bytes
|
265 |
+
|
266 |
+
|
267 |
+
def transcribe_audio(audio_sample):
|
268 |
+
blob_name = f"transformers/transcribed_audio:{hash(audio_sample.tobytes())}"
|
269 |
+
text = load_object_from_gcs(blob_name)
|
270 |
+
if not text:
|
271 |
+
try:
|
272 |
+
with tqdm(total=1, desc="Transcribing audio") as pbar:
|
273 |
+
text = whisper_pipeline(audio_sample.copy(), batch_size=8)["text"]
|
274 |
+
pbar.update(1)
|
275 |
+
save_object_to_gcs(blob_name, text)
|
276 |
+
except Exception as e:
|
277 |
+
print(f"Failed to transcribe audio: {e}")
|
278 |
+
return None
|
279 |
+
return text
|
280 |
+
|
281 |
+
|
282 |
+
def generate_mistral_instruct(prompt):
|
283 |
+
blob_name = f"transformers/generated_mistral_instruct:{prompt}"
|
284 |
+
response = load_object_from_gcs(blob_name)
|
285 |
+
if not response:
|
286 |
+
try:
|
287 |
+
conversation = [{"role": "user", "content": prompt}]
|
288 |
+
with tqdm(total=1, desc="Generating Mistral Instruct response") as pbar:
|
289 |
+
inputs = mistral_instruct_tokenizer.apply_chat_template(
|
290 |
+
conversation,
|
291 |
+
tools=tools,
|
292 |
+
add_generation_prompt=True,
|
293 |
+
return_dict=True,
|
294 |
+
return_tensors="pt",
|
295 |
+
)
|
296 |
+
outputs = mistral_instruct_model.generate(
|
297 |
+
**inputs, max_new_tokens=1000
|
298 |
+
)
|
299 |
+
response = mistral_instruct_tokenizer.decode(
|
300 |
+
outputs[0], skip_special_tokens=True
|
301 |
+
)
|
302 |
+
pbar.update(1)
|
303 |
+
save_object_to_gcs(blob_name, response)
|
304 |
+
except Exception as e:
|
305 |
+
print(f"Failed to generate Mistral Instruct response: {e}")
|
306 |
+
return None
|
307 |
+
return response
|
308 |
+
|
309 |
+
|
310 |
+
def generate_mistral_nemo(prompt):
|
311 |
+
blob_name = f"transformers/generated_mistral_nemo:{prompt}"
|
312 |
+
response = load_object_from_gcs(blob_name)
|
313 |
+
if not response:
|
314 |
+
try:
|
315 |
+
conversation = [{"role": "user", "content": prompt}]
|
316 |
+
with tqdm(total=1, desc="Generating Mistral Nemo response") as pbar:
|
317 |
+
inputs = mistral_nemo_tokenizer.apply_chat_template(
|
318 |
+
conversation,
|
319 |
+
tools=tools,
|
320 |
+
add_generation_prompt=True,
|
321 |
+
return_dict=True,
|
322 |
+
return_tensors="pt",
|
323 |
+
)
|
324 |
+
outputs = mistral_nemo_model.generate(**inputs, max_new_tokens=1000)
|
325 |
+
response = mistral_nemo_tokenizer.decode(
|
326 |
+
outputs[0], skip_special_tokens=True
|
327 |
+
)
|
328 |
+
pbar.update(1)
|
329 |
+
save_object_to_gcs(blob_name, response)
|
330 |
+
except Exception as e:
|
331 |
+
print(f"Failed to generate Mistral Nemo response: {e}")
|
332 |
+
return None
|
333 |
+
return response
|
334 |
+
|
335 |
+
|
336 |
+
def generate_gpt2_xl(prompt):
|
337 |
+
blob_name = f"transformers/generated_gpt2_xl:{prompt}"
|
338 |
+
response = load_object_from_gcs(blob_name)
|
339 |
+
if not response:
|
340 |
+
try:
|
341 |
+
with tqdm(total=1, desc="Generating GPT-2 XL response") as pbar:
|
342 |
+
inputs = gpt2_xl_tokenizer(prompt, return_tensors="pt")
|
343 |
+
outputs = gpt2_xl_model(**inputs)
|
344 |
+
response = gpt2_xl_tokenizer.decode(
|
345 |
+
outputs[0][0], skip_special_tokens=True
|
346 |
+
)
|
347 |
+
pbar.update(1)
|
348 |
+
save_object_to_gcs(blob_name, response)
|
349 |
+
except Exception as e:
|
350 |
+
print(f"Failed to generate GPT-2 XL response: {e}")
|
351 |
+
return None
|
352 |
+
return response
|
353 |
+
|
354 |
+
|
355 |
+
def store_user_question(question):
|
356 |
+
blob_name = "user_questions.txt"
|
357 |
+
blob = bucket.blob(blob_name)
|
358 |
+
if blob.exists():
|
359 |
+
blob.download_to_filename("user_questions.txt")
|
360 |
+
with open("user_questions.txt", "a") as f:
|
361 |
+
f.write(question + "\n")
|
362 |
+
blob.upload_from_filename("user_questions.txt")
|
363 |
+
|
364 |
+
|
365 |
+
def retrain_models():
|
366 |
+
pass
|
367 |
+
|
368 |
+
|
369 |
+
def generate_text_to_video_ms_1_7b(prompt, num_frames=200):
|
370 |
+
blob_name = f"diffusers/text_to_video_ms_1_7b:{prompt}:{num_frames}"
|
371 |
+
video_bytes = load_object_from_gcs(blob_name)
|
372 |
+
if not video_bytes:
|
373 |
+
try:
|
374 |
+
with tqdm(total=1, desc="Generating video") as pbar:
|
375 |
+
video_frames = text_to_video_ms_1_7b_pipeline(
|
376 |
+
prompt, num_inference_steps=25, num_frames=num_frames
|
377 |
+
).frames
|
378 |
+
pbar.update(1)
|
379 |
+
video_path = export_to_video(video_frames)
|
380 |
+
with open(video_path, "rb") as f:
|
381 |
+
video_bytes = f.read()
|
382 |
+
save_object_to_gcs(blob_name, video_bytes)
|
383 |
+
os.remove(video_path)
|
384 |
+
except Exception as e:
|
385 |
+
print(f"Failed to generate video: {e}")
|
386 |
+
return None
|
387 |
+
return video_bytes
|
388 |
+
|
389 |
+
|
390 |
+
def generate_text_to_video_ms_1_7b_short(prompt):
|
391 |
+
blob_name = f"diffusers/text_to_video_ms_1_7b_short:{prompt}"
|
392 |
+
video_bytes = load_object_from_gcs(blob_name)
|
393 |
+
if not video_bytes:
|
394 |
+
try:
|
395 |
+
with tqdm(total=1, desc="Generating short video") as pbar:
|
396 |
+
video_frames = text_to_video_ms_1_7b_short_pipeline(
|
397 |
+
prompt, num_inference_steps=25
|
398 |
+
).frames
|
399 |
+
pbar.update(1)
|
400 |
+
video_path = export_to_video(video_frames)
|
401 |
+
with open(video_path, "rb") as f:
|
402 |
+
video_bytes = f.read()
|
403 |
+
save_object_to_gcs(blob_name, video_bytes)
|
404 |
+
os.remove(video_path)
|
405 |
+
except Exception as e:
|
406 |
+
print(f"Failed to generate short video: {e}")
|
407 |
+
return None
|
408 |
+
return video_bytes
|
409 |
+
|
410 |
+
|
411 |
+
text_to_image_pipeline = get_model_or_download(
|
412 |
+
"stabilityai/stable-diffusion-2",
|
413 |
+
"diffusers/text_to_image_model",
|
414 |
+
StableDiffusionPipeline.from_pretrained,
|
415 |
+
)
|
416 |
+
img2img_pipeline = get_model_or_download(
|
417 |
+
"CompVis/stable-diffusion-v1-4",
|
418 |
+
"diffusers/img2img_model",
|
419 |
+
StableDiffusionImg2ImgPipeline.from_pretrained,
|
420 |
+
)
|
421 |
+
flux_pipeline = get_model_or_download(
|
422 |
+
"black-forest-labs/FLUX.1-schnell",
|
423 |
+
"diffusers/flux_model",
|
424 |
+
FluxPipeline.from_pretrained,
|
425 |
+
)
|
426 |
+
text_gen_pipeline = transformers_pipeline(
|
427 |
+
"text-generation", model="google/gemma-2-9b", tokenizer="google/gemma-2-9b"
|
428 |
+
)
|
429 |
+
music_gen = (
|
430 |
+
load_object_from_gcs("music/music_gen")
|
431 |
+
or musicgen.MusicGen.get_pretrained("melody")
|
432 |
+
)
|
433 |
+
meta_llama_pipeline = get_model_or_download(
|
434 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
435 |
+
"transformers/meta_llama_model",
|
436 |
+
transformers_pipeline,
|
437 |
+
)
|
438 |
+
starcoder_model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")
|
439 |
+
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
|
440 |
+
|
441 |
+
base = DiffusionPipeline.from_pretrained(
|
442 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
443 |
+
torch_dtype=torch.float16,
|
444 |
+
variant="fp16",
|
445 |
+
use_safetensors=True,
|
446 |
+
)
|
447 |
+
refiner = DiffusionPipeline.from_pretrained(
|
448 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
449 |
+
text_encoder_2=base.text_encoder_2,
|
450 |
+
vae=base.vae,
|
451 |
+
torch_dtype=torch.float16,
|
452 |
+
use_safetensors=True,
|
453 |
+
variant="fp16",
|
454 |
+
)
|
455 |
+
music_gen_melody = musicgen.MusicGen.get_pretrained("melody")
|
456 |
+
music_gen_melody.set_generation_params(duration=8)
|
457 |
+
music_gen_large = musicgen.MusicGen.get_pretrained("large")
|
458 |
+
music_gen_large.set_generation_params(duration=8)
|
459 |
+
whisper_pipeline = transformers_pipeline(
|
460 |
+
"automatic-speech-recognition",
|
461 |
+
model="openai/whisper-small",
|
462 |
+
chunk_length_s=30,
|
463 |
+
)
|
464 |
+
mistral_instruct_model = AutoModelForCausalLM.from_pretrained(
|
465 |
+
"mistralai/Mistral-Large-Instruct-2407",
|
466 |
+
torch_dtype=torch.bfloat16,
|
467 |
+
device_map="auto",
|
468 |
+
)
|
469 |
+
mistral_instruct_tokenizer = AutoTokenizer.from_pretrained(
|
470 |
+
"mistralai/Mistral-Large-Instruct-2407"
|
471 |
+
)
|
472 |
+
mistral_nemo_model = AutoModelForCausalLM.from_pretrained(
|
473 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
474 |
+
torch_dtype=torch.bfloat16,
|
475 |
+
device_map="auto",
|
476 |
+
)
|
477 |
+
mistral_nemo_tokenizer = AutoTokenizer.from_pretrained(
|
478 |
+
"mistralai/Mistral-Nemo-Instruct-2407"
|
479 |
+
)
|
480 |
+
gpt2_xl_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-xl")
|
481 |
+
gpt2_xl_model = GPT2Model.from_pretrained("gpt2-xl")
|
482 |
+
|
483 |
+
llama_3_groq_70b_tool_use_pipeline = transformers_pipeline(
|
484 |
+
"text-generation", model="Groq/Llama-3-Groq-70B-Tool-Use"
|
485 |
+
)
|
486 |
+
phi_3_5_mini_instruct_model = AutoModelForCausalLM.from_pretrained(
|
487 |
+
"microsoft/Phi-3.5-mini-instruct", torch_dtype="auto", trust_remote_code=True
|
488 |
+
)
|
489 |
+
phi_3_5_mini_instruct_tokenizer = AutoTokenizer.from_pretrained(
|
490 |
+
"microsoft/Phi-3.5-mini-instruct"
|
491 |
+
)
|
492 |
+
phi_3_5_mini_instruct_pipeline = transformers_pipeline(
|
493 |
+
"text-generation",
|
494 |
+
model=phi_3_5_mini_instruct_model,
|
495 |
+
tokenizer=phi_3_5_mini_instruct_tokenizer,
|
496 |
+
)
|
497 |
+
meta_llama_3_1_8b_pipeline = transformers_pipeline(
|
498 |
+
"text-generation",
|
499 |
+
model="meta-llama/Meta-Llama-3.1-8B",
|
500 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
501 |
+
)
|
502 |
+
meta_llama_3_1_70b_pipeline = transformers_pipeline(
|
503 |
+
"text-generation",
|
504 |
+
model="meta-llama/Meta-Llama-3.1-70B",
|
505 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
506 |
+
)
|
507 |
+
medical_text_summarization_pipeline = transformers_pipeline(
|
508 |
+
"summarization", model="your/medical_text_summarization_model"
|
509 |
+
)
|
510 |
+
bart_large_cnn_summarization_pipeline = transformers_pipeline(
|
511 |
+
"summarization", model="facebook/bart-large-cnn"
|
512 |
+
)
|
513 |
+
flux_1_dev_pipeline = FluxPipeline.from_pretrained(
|
514 |
+
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
515 |
+
)
|
516 |
+
flux_1_dev_pipeline.enable_model_cpu_offload()
|
517 |
+
gemma_2_9b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-9b")
|
518 |
+
gemma_2_9b_it_pipeline = transformers_pipeline(
|
519 |
+
"text-generation",
|
520 |
+
model="google/gemma-2-9b-it",
|
521 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
522 |
+
)
|
523 |
+
gemma_2_2b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-2b")
|
524 |
+
gemma_2_2b_it_pipeline = transformers_pipeline(
|
525 |
+
"text-generation",
|
526 |
+
model="google/gemma-2-2b-it",
|
527 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
528 |
+
)
|
529 |
+
gemma_2_27b_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
|
530 |
+
gemma_2_27b_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-27b")
|
531 |
+
gemma_2_27b_it_pipeline = transformers_pipeline(
|
532 |
+
"text-generation",
|
533 |
+
model="google/gemma-2-27b-it",
|
534 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
535 |
+
)
|
536 |
+
text_to_video_ms_1_7b_pipeline = DiffusionPipeline.from_pretrained(
|
537 |
+
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
|
538 |
+
)
|
539 |
+
text_to_video_ms_1_7b_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
|
540 |
+
text_to_video_ms_1_7b_pipeline.scheduler.config
|
541 |
+
)
|
542 |
+
text_to_video_ms_1_7b_pipeline.enable_model_cpu_offload()
|
543 |
+
text_to_video_ms_1_7b_pipeline.enable_vae_slicing()
|
544 |
+
text_to_video_ms_1_7b_short_pipeline = DiffusionPipeline.from_pretrained(
|
545 |
+
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
|
546 |
+
)
|
547 |
+
text_to_video_ms_1_7b_short_pipeline.scheduler = (
|
548 |
+
DPMSolverMultistepScheduler.from_config(
|
549 |
+
text_to_video_ms_1_7b_short_pipeline.scheduler.config
|
550 |
+
)
|
551 |
+
)
|
552 |
+
text_to_video_ms_1_7b_short_pipeline.enable_model_cpu_offload()
|
553 |
+
|
554 |
+
tools = []
|
555 |
+
|
556 |
+
gen_image_tab = gr.Interface(
|
557 |
+
fn=generate_image,
|
558 |
+
inputs=gr.Textbox(label="Prompt:"),
|
559 |
+
outputs=gr.Image(type="pil"),
|
560 |
+
title="Generate Image",
|
561 |
+
)
|
562 |
+
edit_image_tab = gr.Interface(
|
563 |
+
fn=edit_image_with_prompt,
|
564 |
+
inputs=[
|
565 |
+
gr.Image(type="pil", label="Image:"),
|
566 |
+
gr.Textbox(label="Prompt:"),
|
567 |
+
gr.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:"),
|
568 |
+
],
|
569 |
+
outputs=gr.Image(type="pil"),
|
570 |
+
title="Edit Image",
|
571 |
+
)
|
572 |
+
generate_song_tab = gr.Interface(
|
573 |
+
fn=generate_song,
|
574 |
+
inputs=[
|
575 |
+
gr.Textbox(label="Prompt:"),
|
576 |
+
gr.Slider(5, 60, 10, step=1, label="Duration (s):"),
|
577 |
+
],
|
578 |
+
outputs=gr.Audio(type="numpy"),
|
579 |
+
title="Generate Songs",
|
580 |
+
)
|
581 |
+
generate_text_tab = gr.Interface(
|
582 |
+
fn=generate_text,
|
583 |
+
inputs=gr.Textbox(label="Prompt:"),
|
584 |
+
outputs=gr.Textbox(label="Generated Text:"),
|
585 |
+
title="Generate Text",
|
586 |
+
)
|
587 |
+
generate_flux_image_tab = gr.Interface(
|
588 |
+
fn=generate_flux_image,
|
589 |
+
inputs=gr.Textbox(label="Prompt:"),
|
590 |
+
outputs=gr.Image(type="pil"),
|
591 |
+
title="Generate FLUX Images",
|
592 |
+
)
|
593 |
+
generate_code_tab = gr.Interface(
|
594 |
+
fn=generate_code,
|
595 |
+
inputs=gr.Textbox(label="Prompt:"),
|
596 |
+
outputs=gr.Textbox(label="Generated Code:"),
|
597 |
+
title="Generate Code",
|
598 |
+
)
|
599 |
+
model_meta_llama_test_tab = gr.Interface(
|
600 |
+
fn=test_model_meta_llama,
|
601 |
+
inputs=None,
|
602 |
+
outputs=gr.Textbox(label="Model Output:"),
|
603 |
+
title="Test Meta-Llama",
|
604 |
+
)
|
605 |
+
generate_image_sdxl_tab = gr.Interface(
|
606 |
+
fn=generate_image_sdxl,
|
607 |
+
inputs=gr.Textbox(label="Prompt:"),
|
608 |
+
outputs=gr.Image(type="pil"),
|
609 |
+
title="Generate SDXL Image",
|
610 |
+
)
|
611 |
+
generate_musicgen_melody_tab = gr.Interface(
|
612 |
+
fn=generate_musicgen_melody,
|
613 |
+
inputs=gr.Textbox(label="Prompt:"),
|
614 |
+
outputs=gr.Audio(type="numpy"),
|
615 |
+
title="Generate MusicGen Melody",
|
616 |
+
)
|
617 |
+
generate_musicgen_large_tab = gr.Interface(
|
618 |
+
fn=generate_musicgen_large,
|
619 |
+
inputs=gr.Textbox(label="Prompt:"),
|
620 |
+
outputs=gr.Audio(type="numpy"),
|
621 |
+
title="Generate MusicGen Large",
|
622 |
+
)
|
623 |
+
transcribe_audio_tab = gr.Interface(
|
624 |
+
fn=transcribe_audio,
|
625 |
+
inputs=gr.Audio(type="numpy", label="Audio Sample:"),
|
626 |
+
outputs=gr.Textbox(label="Transcribed Text:"),
|
627 |
+
title="Transcribe Audio",
|
628 |
+
)
|
629 |
+
generate_mistral_instruct_tab = gr.Interface(
|
630 |
+
fn=generate_mistral_instruct,
|
631 |
+
inputs=gr.Textbox(label="Prompt:"),
|
632 |
+
outputs=gr.Textbox(label="Mistral Instruct Response:"),
|
633 |
+
title="Generate Mistral Instruct Response",
|
634 |
+
)
|
635 |
+
generate_mistral_nemo_tab = gr.Interface(
|
636 |
+
fn=generate_mistral_nemo,
|
637 |
+
inputs=gr.Textbox(label="Prompt:"),
|
638 |
+
outputs=gr.Textbox(label="Mistral Nemo Response:"),
|
639 |
+
title="Generate Mistral Nemo Response",
|
640 |
+
)
|
641 |
+
generate_gpt2_xl_tab = gr.Interface(
|
642 |
+
fn=generate_gpt2_xl,
|
643 |
+
inputs=gr.Textbox(label="Prompt:"),
|
644 |
+
outputs=gr.Textbox(label="GPT-2 XL Response:"),
|
645 |
+
title="Generate GPT-2 XL Response",
|
646 |
+
)
|
647 |
+
answer_question_minicpm_tab = gr.Interface(
|
648 |
+
fn=answer_question_minicpm,
|
649 |
+
inputs=[
|
650 |
+
gr.Image(type="pil", label="Image:"),
|
651 |
+
gr.Textbox(label="Question:"),
|
652 |
+
],
|
653 |
+
outputs=gr.Textbox(label="MiniCPM Answer:"),
|
654 |
+
title="Answer Question with MiniCPM",
|
655 |
+
)
|
656 |
+
llama_3_groq_70b_tool_use_tab = gr.Interface(
|
657 |
+
fn=llama_3_groq_70b_tool_use_pipeline,
|
658 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
659 |
+
outputs=gr.Textbox(label="Llama 3 Groq 70B Tool Use Response:"),
|
660 |
+
title="Llama 3 Groq 70B Tool Use",
|
661 |
+
)
|
662 |
+
phi_3_5_mini_instruct_tab = gr.Interface(
|
663 |
+
fn=phi_3_5_mini_instruct_pipeline,
|
664 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
665 |
+
outputs=gr.Textbox(label="Phi 3.5 Mini Instruct Response:"),
|
666 |
+
title="Phi 3.5 Mini Instruct",
|
667 |
+
)
|
668 |
+
meta_llama_3_1_8b_tab = gr.Interface(
|
669 |
+
fn=meta_llama_3_1_8b_pipeline,
|
670 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
671 |
+
outputs=gr.Textbox(label="Meta Llama 3.1 8B Response:"),
|
672 |
+
title="Meta Llama 3.1 8B",
|
673 |
+
)
|
674 |
+
meta_llama_3_1_70b_tab = gr.Interface(
|
675 |
+
fn=meta_llama_3_1_70b_pipeline,
|
676 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
677 |
+
outputs=gr.Textbox(label="Meta Llama 3.1 70B Response:"),
|
678 |
+
title="Meta Llama 3.1 70B",
|
679 |
+
)
|
680 |
+
medical_text_summarization_tab = gr.Interface(
|
681 |
+
fn=medical_text_summarization_pipeline,
|
682 |
+
inputs=[gr.Textbox(label="Medical Document:")],
|
683 |
+
outputs=gr.Textbox(label="Medical Text Summarization:"),
|
684 |
+
title="Medical Text Summarization",
|
685 |
+
)
|
686 |
+
bart_large_cnn_summarization_tab = gr.Interface(
|
687 |
+
fn=bart_large_cnn_summarization_pipeline,
|
688 |
+
inputs=[gr.Textbox(label="Article:")],
|
689 |
+
outputs=gr.Textbox(label="Bart Large CNN Summarization:"),
|
690 |
+
title="Bart Large CNN Summarization",
|
691 |
+
)
|
692 |
+
flux_1_dev_tab = gr.Interface(
|
693 |
+
fn=flux_1_dev_pipeline,
|
694 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
695 |
+
outputs=gr.Image(type="pil"),
|
696 |
+
title="FLUX 1 Dev",
|
697 |
+
)
|
698 |
+
gemma_2_9b_tab = gr.Interface(
|
699 |
+
fn=gemma_2_9b_pipeline,
|
700 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
701 |
+
outputs=gr.Textbox(label="Gemma 2 9B Response:"),
|
702 |
+
title="Gemma 2 9B",
|
703 |
+
)
|
704 |
+
gemma_2_9b_it_tab = gr.Interface(
|
705 |
+
fn=gemma_2_9b_it_pipeline,
|
706 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
707 |
+
outputs=gr.Textbox(label="Gemma 2 9B IT Response:"),
|
708 |
+
title="Gemma 2 9B IT",
|
709 |
+
)
|
710 |
+
gemma_2_2b_tab = gr.Interface(
|
711 |
+
fn=gemma_2_2b_pipeline,
|
712 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
713 |
+
outputs=gr.Textbox(label="Gemma 2 2B Response:"),
|
714 |
+
title="Gemma 2 2B",
|
715 |
+
)
|
716 |
+
gemma_2_2b_it_tab = gr.Interface(
|
717 |
+
fn=gemma_2_2b_it_pipeline,
|
718 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
719 |
+
outputs=gr.Textbox(label="Gemma 2 2B IT Response:"),
|
720 |
+
title="Gemma 2 2B IT",
|
721 |
+
)
|
722 |
+
|
723 |
+
|
724 |
+
def generate_gemma_2_27b(prompt):
|
725 |
+
input_ids = gemma_2_27b_tokenizer(prompt, return_tensors="pt")
|
726 |
+
outputs = gemma_2_27b_model.generate(**input_ids, max_new_tokens=32)
|
727 |
+
return gemma_2_27b_tokenizer.decode(outputs[0])
|
728 |
+
|
729 |
+
|
730 |
+
gemma_2_27b_tab = gr.Interface(
|
731 |
+
fn=generate_gemma_2_27b,
|
732 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
733 |
+
outputs=gr.Textbox(label="Gemma 2 27B Response:"),
|
734 |
+
title="Gemma 2 27B",
|
735 |
+
)
|
736 |
+
gemma_2_27b_it_tab = gr.Interface(
|
737 |
+
fn=gemma_2_27b_it_pipeline,
|
738 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
739 |
+
outputs=gr.Textbox(label="Gemma 2 27B IT Response:"),
|
740 |
+
title="Gemma 2 27B IT",
|
741 |
+
)
|
742 |
+
text_to_video_ms_1_7b_tab = gr.Interface(
|
743 |
+
fn=generate_text_to_video_ms_1_7b,
|
744 |
+
inputs=[
|
745 |
+
gr.Textbox(label="Prompt:"),
|
746 |
+
gr.Slider(50, 200, 200, step=1, label="Number of Frames:"),
|
747 |
+
],
|
748 |
+
outputs=gr.Video(),
|
749 |
+
title="Text to Video MS 1.7B",
|
750 |
+
)
|
751 |
+
text_to_video_ms_1_7b_short_tab = gr.Interface(
|
752 |
+
fn=generate_text_to_video_ms_1_7b_short,
|
753 |
+
inputs=[gr.Textbox(label="Prompt:")],
|
754 |
+
outputs=gr.Video(),
|
755 |
+
title="Text to Video MS 1.7B Short",
|
756 |
+
)
|
757 |
+
|
758 |
+
app = gr.TabbedInterface(
|
759 |
+
[
|
760 |
+
gen_image_tab,
|
761 |
+
edit_image_tab,
|
762 |
+
generate_song_tab,
|
763 |
+
generate_text_tab,
|
764 |
+
generate_flux_image_tab,
|
765 |
+
generate_code_tab,
|
766 |
+
model_meta_llama_test_tab,
|
767 |
+
generate_image_sdxl_tab,
|
768 |
+
generate_musicgen_melody_tab,
|
769 |
+
generate_musicgen_large_tab,
|
770 |
+
transcribe_audio_tab,
|
771 |
+
generate_mistral_instruct_tab,
|
772 |
+
generate_mistral_nemo_tab,
|
773 |
+
generate_gpt2_xl_tab,
|
774 |
+
llama_3_groq_70b_tool_use_tab,
|
775 |
+
phi_3_5_mini_instruct_tab,
|
776 |
+
meta_llama_3_1_8b_tab,
|
777 |
+
meta_llama_3_1_70b_tab,
|
778 |
+
medical_text_summarization_tab,
|
779 |
+
bart_large_cnn_summarization_tab,
|
780 |
+
flux_1_dev_tab,
|
781 |
+
gemma_2_9b_tab,
|
782 |
+
gemma_2_9b_it_tab,
|
783 |
+
gemma_2_2b_tab,
|
784 |
+
gemma_2_2b_it_tab,
|
785 |
+
gemma_2_27b_tab,
|
786 |
+
gemma_2_27b_it_tab,
|
787 |
+
text_to_video_ms_1_7b_tab,
|
788 |
+
text_to_video_ms_1_7b_short_tab,
|
789 |
+
],
|
790 |
+
[
|
791 |
+
"Generate Image",
|
792 |
+
"Edit Image",
|
793 |
+
"Generate Song",
|
794 |
+
"Generate Text",
|
795 |
+
"Generate FLUX Image",
|
796 |
+
"Generate Code",
|
797 |
+
"Test Meta-Llama",
|
798 |
+
"Generate SDXL Image",
|
799 |
+
"Generate MusicGen Melody",
|
800 |
+
"Generate MusicGen Large",
|
801 |
+
"Transcribe Audio",
|
802 |
+
"Generate Mistral Instruct Response",
|
803 |
+
"Generate Mistral Nemo Response",
|
804 |
+
"Generate GPT-2 XL Response",
|
805 |
+
"Llama 3 Groq 70B Tool Use",
|
806 |
+
"Phi 3.5 Mini Instruct",
|
807 |
+
"Meta Llama 3.1 8B",
|
808 |
+
"Meta Llama 3.1 70B",
|
809 |
+
"Medical Text Summarization",
|
810 |
+
"Bart Large CNN Summarization",
|
811 |
+
"FLUX 1 Dev",
|
812 |
+
"Gemma 2 9B",
|
813 |
+
"Gemma 2 9B IT",
|
814 |
+
"Gemma 2 2B",
|
815 |
+
"Gemma 2 2B IT",
|
816 |
+
"Gemma 2 27B",
|
817 |
+
"Gemma 2 27B IT",
|
818 |
+
"Text to Video MS 1.7B",
|
819 |
+
"Text to Video MS 1.7B Short",
|
820 |
+
],
|
821 |
+
)
|
822 |
+
|
823 |
+
app.launch(share=True)
|