import os import pickle import torch from PIL import Image from diffusers import ( StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, FluxPipeline, DiffusionPipeline, DPMSolverMultistepScheduler, ) from transformers import ( pipeline as transformers_pipeline, AutoModelForCausalLM, AutoTokenizer, GPT2Tokenizer, GPT2Model, AutoModel ) from audiocraft.models import musicgen import gradio as gr from huggingface_hub import snapshot_download, HfApi, HfFolder import io import time from tqdm import tqdm from google.cloud import storage import json hf_token = os.getenv("HF_TOKEN") gcs_credentials = json.loads(os.getenv("GCS_CREDENTIALS")) gcs_bucket_name = os.getenv("GCS_BUCKET_NAME") HfFolder.save_token(hf_token) storage_client = storage.Client.from_service_account_info(gcs_credentials) bucket = storage_client.bucket(gcs_bucket_name) def load_object_from_gcs(blob_name): blob = bucket.blob(blob_name) if blob.exists(): return pickle.loads(blob.download_as_bytes()) return None def save_object_to_gcs(blob_name, obj): blob = bucket.blob(blob_name) blob.upload_from_string(pickle.dumps(obj)) def get_model_or_download(model_id, blob_name, loader_func): model = load_object_from_gcs(blob_name) if model: return model try: with tqdm(total=1, desc=f"Downloading {model_id}") as pbar: model = loader_func(model_id, torch_dtype=torch.float16) pbar.update(1) save_object_to_gcs(blob_name, model) return model except Exception as e: print(f"Failed to load or save model: {e}") return None def generate_image(prompt): blob_name = f"diffusers/generated_image:{prompt}" image_bytes = load_object_from_gcs(blob_name) if not image_bytes: try: with tqdm(total=1, desc="Generating image") as pbar: image = text_to_image_pipeline(prompt).images[0] pbar.update(1) buffered = io.BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() save_object_to_gcs(blob_name, image_bytes) except Exception as e: print(f"Failed to generate image: {e}") return None return image_bytes def edit_image_with_prompt(image_bytes, prompt, strength=0.75): blob_name = f"diffusers/edited_image:{prompt}:{strength}" edited_image_bytes = load_object_from_gcs(blob_name) if not edited_image_bytes: try: image = Image.open(io.BytesIO(image_bytes)) with tqdm(total=1, desc="Editing image") as pbar: edited_image = img2img_pipeline( prompt=prompt, image=image, strength=strength ).images[0] pbar.update(1) buffered = io.BytesIO() edited_image.save(buffered, format="JPEG") edited_image_bytes = buffered.getvalue() save_object_to_gcs(blob_name, edited_image_bytes) except Exception as e: print(f"Failed to edit image: {e}") return None return edited_image_bytes def generate_song(prompt, duration=10): blob_name = f"music/generated_song:{prompt}:{duration}" song_bytes = load_object_from_gcs(blob_name) if not song_bytes: try: with tqdm(total=1, desc="Generating song") as pbar: song = music_gen(prompt, duration=duration) pbar.update(1) song_bytes = song[0].getvalue() save_object_to_gcs(blob_name, song_bytes) except Exception as e: print(f"Failed to generate song: {e}") return None return song_bytes def generate_text(prompt): blob_name = f"transformers/generated_text:{prompt}" text = load_object_from_gcs(blob_name) if not text: try: with tqdm(total=1, desc="Generating text") as pbar: text = text_gen_pipeline(prompt, max_new_tokens=256)[0][ "generated_text" ].strip() pbar.update(1) save_object_to_gcs(blob_name, text) except Exception as e: print(f"Failed to generate text: {e}") return None return text def generate_flux_image(prompt): blob_name = f"diffusers/generated_flux_image:{prompt}" flux_image_bytes = load_object_from_gcs(blob_name) if not flux_image_bytes: try: with tqdm(total=1, desc="Generating FLUX image") as pbar: flux_image = flux_pipeline( prompt, guidance_scale=0.0, num_inference_steps=4, max_length=256, generator=torch.Generator("cpu").manual_seed(0), ).images[0] pbar.update(1) buffered = io.BytesIO() flux_image.save(buffered, format="JPEG") flux_image_bytes = buffered.getvalue() save_object_to_gcs(blob_name, flux_image_bytes) except Exception as e: print(f"Failed to generate flux image: {e}") return None return flux_image_bytes def generate_code(prompt): blob_name = f"transformers/generated_code:{prompt}" code = load_object_from_gcs(blob_name) if not code: try: with tqdm(total=1, desc="Generating code") as pbar: inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt") outputs = starcoder_model.generate(inputs, max_new_tokens=256) code = starcoder_tokenizer.decode(outputs[0]) pbar.update(1) save_object_to_gcs(blob_name, code) except Exception as e: print(f"Failed to generate code: {e}") return None return code def test_model_meta_llama(): blob_name = "transformers/meta_llama_test_response" response = load_object_from_gcs(blob_name) if not response: try: messages = [ { "role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!", }, {"role": "user", "content": "Who are you?"}, ] with tqdm(total=1, desc="Testing Meta-Llama") as pbar: response = meta_llama_pipeline(messages, max_new_tokens=256)[0][ "generated_text" ].strip() pbar.update(1) save_object_to_gcs(blob_name, response) except Exception as e: print(f"Failed to test Meta-Llama: {e}") return None return response def generate_image_sdxl(prompt): blob_name = f"diffusers/generated_image_sdxl:{prompt}" image_bytes = load_object_from_gcs(blob_name) if not image_bytes: try: with tqdm(total=1, desc="Generating SDXL image") as pbar: image = base( prompt=prompt, num_inference_steps=40, denoising_end=0.8, output_type="latent", ).images image = refiner( prompt=prompt, num_inference_steps=40, denoising_start=0.8, image=image, ).images[0] pbar.update(1) buffered = io.BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() save_object_to_gcs(blob_name, image_bytes) except Exception as e: print(f"Failed to generate SDXL image: {e}") return None return image_bytes def generate_musicgen_melody(prompt): blob_name = f"music/generated_musicgen_melody:{prompt}" song_bytes = load_object_from_gcs(blob_name) if not song_bytes: try: with tqdm(total=1, desc="Generating MusicGen melody") as pbar: melody, sr = torchaudio.load("./assets/bach.mp3") wav = music_gen_melody.generate_with_chroma( [prompt], melody[None].expand(3, -1, -1), sr ) pbar.update(1) song_bytes = wav[0].getvalue() save_object_to_gcs(blob_name, song_bytes) except Exception as e: print(f"Failed to generate MusicGen melody: {e}") return None return song_bytes def generate_musicgen_large(prompt): blob_name = f"music/generated_musicgen_large:{prompt}" song_bytes = load_object_from_gcs(blob_name) if not song_bytes: try: with tqdm(total=1, desc="Generating MusicGen large") as pbar: wav = music_gen_large.generate([prompt]) pbar.update(1) song_bytes = wav[0].getvalue() save_object_to_gcs(blob_name, song_bytes) except Exception as e: print(f"Failed to generate MusicGen large: {e}") return None return song_bytes def transcribe_audio(audio_sample): blob_name = f"transformers/transcribed_audio:{hash(audio_sample.tobytes())}" text = load_object_from_gcs(blob_name) if not text: try: with tqdm(total=1, desc="Transcribing audio") as pbar: text = whisper_pipeline(audio_sample.copy(), batch_size=8)["text"] pbar.update(1) save_object_to_gcs(blob_name, text) except Exception as e: print(f"Failed to transcribe audio: {e}") return None return text def generate_mistral_instruct(prompt): blob_name = f"transformers/generated_mistral_instruct:{prompt}" response = load_object_from_gcs(blob_name) if not response: try: conversation = [{"role": "user", "content": prompt}] with tqdm(total=1, desc="Generating Mistral Instruct response") as pbar: inputs = mistral_instruct_tokenizer.apply_chat_template( conversation, tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt", ) outputs = mistral_instruct_model.generate( **inputs, max_new_tokens=1000 ) response = mistral_instruct_tokenizer.decode( outputs[0], skip_special_tokens=True ) pbar.update(1) save_object_to_gcs(blob_name, response) except Exception as e: print(f"Failed to generate Mistral Instruct response: {e}") return None return response def generate_mistral_nemo(prompt): blob_name = f"transformers/generated_mistral_nemo:{prompt}" response = load_object_from_gcs(blob_name) if not response: try: conversation = [{"role": "user", "content": prompt}] with tqdm(total=1, desc="Generating Mistral Nemo response") as pbar: inputs = mistral_nemo_tokenizer.apply_chat_template( conversation, tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt", ) outputs = mistral_nemo_model.generate(**inputs, max_new_tokens=1000) response = mistral_nemo_tokenizer.decode( outputs[0], skip_special_tokens=True ) pbar.update(1) save_object_to_gcs(blob_name, response) except Exception as e: print(f"Failed to generate Mistral Nemo response: {e}") return None return response def generate_gpt2_xl(prompt): blob_name = f"transformers/generated_gpt2_xl:{prompt}" response = load_object_from_gcs(blob_name) if not response: try: with tqdm(total=1, desc="Generating GPT-2 XL response") as pbar: inputs = gpt2_xl_tokenizer(prompt, return_tensors="pt") outputs = gpt2_xl_model(**inputs) response = gpt2_xl_tokenizer.decode( outputs[0][0], skip_special_tokens=True ) pbar.update(1) save_object_to_gcs(blob_name, response) except Exception as e: print(f"Failed to generate GPT-2 XL response: {e}") return None return response def answer_question_minicpm(image_bytes, question): blob_name = f"transformers/minicpm_answer:{hash(image_bytes)}:{question}" answer = load_object_from_gcs(blob_name) if not answer: try: image = Image.open(io.BytesIO(image_bytes)).convert("RGB") with tqdm(total=1, desc="Answering question with MiniCPM") as pbar: msgs = [{"role": "user", "content": [image, question]}] answer = minicpm_model.chat( image=None, msgs=msgs, tokenizer=minicpm_tokenizer ) pbar.update(1) save_object_to_gcs(blob_name, answer) except Exception as e: print(f"Failed to answer question with MiniCPM: {e}") return None return answer def store_user_question(question): blob_name = "user_questions.txt" blob = bucket.blob(blob_name) if blob.exists(): blob.download_to_filename("user_questions.txt") with open("user_questions.txt", "a") as f: f.write(question + "\n") blob.upload_from_filename("user_questions.txt") def retrain_models(): pass def generate_text_to_video_ms_1_7b(prompt, num_frames=200): blob_name = f"diffusers/text_to_video_ms_1_7b:{prompt}:{num_frames}" video_bytes = load_object_from_gcs(blob_name) if not video_bytes: try: with tqdm(total=1, desc="Generating video") as pbar: video_frames = text_to_video_ms_1_7b_pipeline( prompt, num_inference_steps=25, num_frames=num_frames ).frames pbar.update(1) video_path = export_to_video(video_frames) with open(video_path, "rb") as f: video_bytes = f.read() save_object_to_gcs(blob_name, video_bytes) os.remove(video_path) except Exception as e: print(f"Failed to generate video: {e}") return None return video_bytes def generate_text_to_video_ms_1_7b_short(prompt): blob_name = f"diffusers/text_to_video_ms_1_7b_short:{prompt}" video_bytes = load_object_from_gcs(blob_name) if not video_bytes: try: with tqdm(total=1, desc="Generating short video") as pbar: video_frames = text_to_video_ms_1_7b_short_pipeline( prompt, num_inference_steps=25 ).frames pbar.update(1) video_path = export_to_video(video_frames) with open(video_path, "rb") as f: video_bytes = f.read() save_object_to_gcs(blob_name, video_bytes) os.remove(video_path) except Exception as e: print(f"Failed to generate short video: {e}") return None return video_bytes text_to_image_pipeline = get_model_or_download( "stabilityai/stable-diffusion-2", "diffusers/text_to_image_model", StableDiffusionPipeline.from_pretrained, ) img2img_pipeline = get_model_or_download( "CompVis/stable-diffusion-v1-4", "diffusers/img2img_model", StableDiffusionImg2ImgPipeline.from_pretrained, ) flux_pipeline = get_model_or_download( "black-forest-labs/FLUX.1-schnell", "diffusers/flux_model", FluxPipeline.from_pretrained, ) text_gen_pipeline = transformers_pipeline( "text-generation", model="google/gemma-2-9b", tokenizer="google/gemma-2-9b" ) music_gen = ( load_object_from_gcs("music/music_gen") or musicgen.MusicGen.get_pretrained("melody") ) meta_llama_pipeline = get_model_or_download( "meta-llama/Meta-Llama-3.1-8B-Instruct", "transformers/meta_llama_model", transformers_pipeline, ) starcoder_model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder") starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder") base = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ) refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=base.text_encoder_2, vae=base.vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) music_gen_melody = musicgen.MusicGen.get_pretrained("melody") music_gen_melody.set_generation_params(duration=8) music_gen_large = musicgen.MusicGen.get_pretrained("large") music_gen_large.set_generation_params(duration=8) whisper_pipeline = transformers_pipeline( "automatic-speech-recognition", model="openai/whisper-small", chunk_length_s=30, ) mistral_instruct_model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-Large-Instruct-2407", torch_dtype=torch.bfloat16, device_map="auto", ) mistral_instruct_tokenizer = AutoTokenizer.from_pretrained( "mistralai/Mistral-Large-Instruct-2407" ) mistral_nemo_model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-Nemo-Instruct-2407", torch_dtype=torch.bfloat16, device_map="auto", ) mistral_nemo_tokenizer = AutoTokenizer.from_pretrained( "mistralai/Mistral-Nemo-Instruct-2407" ) gpt2_xl_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-xl") gpt2_xl_model = GPT2Model.from_pretrained("gpt2-xl") llama_3_groq_70b_tool_use_pipeline = transformers_pipeline( "text-generation", model="Groq/Llama-3-Groq-70B-Tool-Use" ) phi_3_5_mini_instruct_model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3.5-mini-instruct", torch_dtype="auto", trust_remote_code=True ) phi_3_5_mini_instruct_tokenizer = AutoTokenizer.from_pretrained( "microsoft/Phi-3.5-mini-instruct" ) phi_3_5_mini_instruct_pipeline = transformers_pipeline( "text-generation", model=phi_3_5_mini_instruct_model, tokenizer=phi_3_5_mini_instruct_tokenizer, ) meta_llama_3_1_8b_pipeline = transformers_pipeline( "text-generation", model="meta-llama/Meta-Llama-3.1-8B", model_kwargs={"torch_dtype": torch.bfloat16}, ) meta_llama_3_1_70b_pipeline = transformers_pipeline( "text-generation", model="meta-llama/Meta-Llama-3.1-70B", model_kwargs={"torch_dtype": torch.bfloat16}, ) medical_text_summarization_pipeline = transformers_pipeline( "summarization", model="your/medical_text_summarization_model" ) bart_large_cnn_summarization_pipeline = transformers_pipeline( "summarization", model="facebook/bart-large-cnn" ) flux_1_dev_pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 ) flux_1_dev_pipeline.enable_model_cpu_offload() gemma_2_9b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-9b") gemma_2_9b_it_pipeline = transformers_pipeline( "text-generation", model="google/gemma-2-9b-it", model_kwargs={"torch_dtype": torch.bfloat16}, ) gemma_2_2b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-2b") gemma_2_2b_it_pipeline = transformers_pipeline( "text-generation", model="google/gemma-2-2b-it", model_kwargs={"torch_dtype": torch.bfloat16}, ) gemma_2_27b_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b") gemma_2_27b_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-27b") gemma_2_27b_it_pipeline = transformers_pipeline( "text-generation", model="google/gemma-2-27b-it", model_kwargs={"torch_dtype": torch.bfloat16}, ) text_to_video_ms_1_7b_pipeline = DiffusionPipeline.from_pretrained( "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" ) text_to_video_ms_1_7b_pipeline.scheduler = DPMSolverMultistepScheduler.from_config( text_to_video_ms_1_7b_pipeline.scheduler.config ) text_to_video_ms_1_7b_pipeline.enable_model_cpu_offload() text_to_video_ms_1_7b_pipeline.enable_vae_slicing() text_to_video_ms_1_7b_short_pipeline = DiffusionPipeline.from_pretrained( "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" ) text_to_video_ms_1_7b_short_pipeline.scheduler = ( DPMSolverMultistepScheduler.from_config( text_to_video_ms_1_7b_short_pipeline.scheduler.config ) ) text_to_video_ms_1_7b_short_pipeline.enable_model_cpu_offload() tools = [] gen_image_tab = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Image(type="pil"), title="Generate Image", ) edit_image_tab = gr.Interface( fn=edit_image_with_prompt, inputs=[ gr.Image(type="pil", label="Image:"), gr.Textbox(label="Prompt:"), gr.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:"), ], outputs=gr.Image(type="pil"), title="Edit Image", ) generate_song_tab = gr.Interface( fn=generate_song, inputs=[ gr.Textbox(label="Prompt:"), gr.Slider(5, 60, 10, step=1, label="Duration (s):"), ], outputs=gr.Audio(type="numpy"), title="Generate Songs", ) generate_text_tab = gr.Interface( fn=generate_text, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Textbox(label="Generated Text:"), title="Generate Text", ) generate_flux_image_tab = gr.Interface( fn=generate_flux_image, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Image(type="pil"), title="Generate FLUX Images", ) generate_code_tab = gr.Interface( fn=generate_code, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Textbox(label="Generated Code:"), title="Generate Code", ) model_meta_llama_test_tab = gr.Interface( fn=test_model_meta_llama, inputs=None, outputs=gr.Textbox(label="Model Output:"), title="Test Meta-Llama", ) generate_image_sdxl_tab = gr.Interface( fn=generate_image_sdxl, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Image(type="pil"), title="Generate SDXL Image", ) generate_musicgen_melody_tab = gr.Interface( fn=generate_musicgen_melody, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Audio(type="numpy"), title="Generate MusicGen Melody", ) generate_musicgen_large_tab = gr.Interface( fn=generate_musicgen_large, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Audio(type="numpy"), title="Generate MusicGen Large", ) transcribe_audio_tab = gr.Interface( fn=transcribe_audio, inputs=gr.Audio(type="numpy", label="Audio Sample:"), outputs=gr.Textbox(label="Transcribed Text:"), title="Transcribe Audio", ) generate_mistral_instruct_tab = gr.Interface( fn=generate_mistral_instruct, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Textbox(label="Mistral Instruct Response:"), title="Generate Mistral Instruct Response", ) generate_mistral_nemo_tab = gr.Interface( fn=generate_mistral_nemo, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Textbox(label="Mistral Nemo Response:"), title="Generate Mistral Nemo Response", ) generate_gpt2_xl_tab = gr.Interface( fn=generate_gpt2_xl, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Textbox(label="GPT-2 XL Response:"), title="Generate GPT-2 XL Response", ) answer_question_minicpm_tab = gr.Interface( fn=answer_question_minicpm, inputs=[ gr.Image(type="pil", label="Image:"), gr.Textbox(label="Question:"), ], outputs=gr.Textbox(label="MiniCPM Answer:"), title="Answer Question with MiniCPM", ) llama_3_groq_70b_tool_use_tab = gr.Interface( fn=llama_3_groq_70b_tool_use_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Llama 3 Groq 70B Tool Use Response:"), title="Llama 3 Groq 70B Tool Use", ) phi_3_5_mini_instruct_tab = gr.Interface( fn=phi_3_5_mini_instruct_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Phi 3.5 Mini Instruct Response:"), title="Phi 3.5 Mini Instruct", ) meta_llama_3_1_8b_tab = gr.Interface( fn=meta_llama_3_1_8b_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Meta Llama 3.1 8B Response:"), title="Meta Llama 3.1 8B", ) meta_llama_3_1_70b_tab = gr.Interface( fn=meta_llama_3_1_70b_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Meta Llama 3.1 70B Response:"), title="Meta Llama 3.1 70B", ) medical_text_summarization_tab = gr.Interface( fn=medical_text_summarization_pipeline, inputs=[gr.Textbox(label="Medical Document:")], outputs=gr.Textbox(label="Medical Text Summarization:"), title="Medical Text Summarization", ) bart_large_cnn_summarization_tab = gr.Interface( fn=bart_large_cnn_summarization_pipeline, inputs=[gr.Textbox(label="Article:")], outputs=gr.Textbox(label="Bart Large CNN Summarization:"), title="Bart Large CNN Summarization", ) flux_1_dev_tab = gr.Interface( fn=flux_1_dev_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Image(type="pil"), title="FLUX 1 Dev", ) gemma_2_9b_tab = gr.Interface( fn=gemma_2_9b_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Gemma 2 9B Response:"), title="Gemma 2 9B", ) gemma_2_9b_it_tab = gr.Interface( fn=gemma_2_9b_it_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Gemma 2 9B IT Response:"), title="Gemma 2 9B IT", ) gemma_2_2b_tab = gr.Interface( fn=gemma_2_2b_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Gemma 2 2B Response:"), title="Gemma 2 2B", ) gemma_2_2b_it_tab = gr.Interface( fn=gemma_2_2b_it_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Gemma 2 2B IT Response:"), title="Gemma 2 2B IT", ) def generate_gemma_2_27b(prompt): input_ids = gemma_2_27b_tokenizer(prompt, return_tensors="pt") outputs = gemma_2_27b_model.generate(**input_ids, max_new_tokens=32) return gemma_2_27b_tokenizer.decode(outputs[0]) gemma_2_27b_tab = gr.Interface( fn=generate_gemma_2_27b, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Gemma 2 27B Response:"), title="Gemma 2 27B", ) gemma_2_27b_it_tab = gr.Interface( fn=gemma_2_27b_it_pipeline, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Textbox(label="Gemma 2 27B IT Response:"), title="Gemma 2 27B IT", ) text_to_video_ms_1_7b_tab = gr.Interface( fn=generate_text_to_video_ms_1_7b, inputs=[ gr.Textbox(label="Prompt:"), gr.Slider(50, 200, 200, step=1, label="Number of Frames:"), ], outputs=gr.Video(), title="Text to Video MS 1.7B", ) text_to_video_ms_1_7b_short_tab = gr.Interface( fn=generate_text_to_video_ms_1_7b_short, inputs=[gr.Textbox(label="Prompt:")], outputs=gr.Video(), title="Text to Video MS 1.7B Short", ) app = gr.TabbedInterface( [ gen_image_tab, edit_image_tab, generate_song_tab, generate_text_tab, generate_flux_image_tab, generate_code_tab, model_meta_llama_test_tab, generate_image_sdxl_tab, generate_musicgen_melody_tab, generate_musicgen_large_tab, transcribe_audio_tab, generate_mistral_instruct_tab, generate_mistral_nemo_tab, generate_gpt2_xl_tab, llama_3_groq_70b_tool_use_tab, phi_3_5_mini_instruct_tab, meta_llama_3_1_8b_tab, meta_llama_3_1_70b_tab, medical_text_summarization_tab, bart_large_cnn_summarization_tab, flux_1_dev_tab, gemma_2_9b_tab, gemma_2_9b_it_tab, gemma_2_2b_tab, gemma_2_2b_it_tab, gemma_2_27b_tab, gemma_2_27b_it_tab, text_to_video_ms_1_7b_tab, text_to_video_ms_1_7b_short_tab, ], [ "Generate Image", "Edit Image", "Generate Song", "Generate Text", "Generate FLUX Image", "Generate Code", "Test Meta-Llama", "Generate SDXL Image", "Generate MusicGen Melody", "Generate MusicGen Large", "Transcribe Audio", "Generate Mistral Instruct Response", "Generate Mistral Nemo Response", "Generate GPT-2 XL Response", "Llama 3 Groq 70B Tool Use", "Phi 3.5 Mini Instruct", "Meta Llama 3.1 8B", "Meta Llama 3.1 70B", "Medical Text Summarization", "Bart Large CNN Summarization", "FLUX 1 Dev", "Gemma 2 9B", "Gemma 2 9B IT", "Gemma 2 2B", "Gemma 2 2B IT", "Gemma 2 27B", "Gemma 2 27B IT", "Text to Video MS 1.7B", "Text to Video MS 1.7B Short", ], ) app.launch(share=True)