Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,14 @@ import category_encoders as ce
|
|
5 |
|
6 |
model = joblib.load('model_tree.joblib')
|
7 |
unique_values = joblib.load('unique_values.joblib')
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
unique_Sex = unique_values['Sex']
|
10 |
unique_BP = unique_values['BP']
|
11 |
unique_Cholesterol = unique_values['Cholesterol']
|
@@ -27,9 +34,9 @@ def main():
|
|
27 |
if clicked:
|
28 |
result=model.predict(pd.DataFrame({"Age": [Age],
|
29 |
"Na_to_K": [Na_to_K],
|
30 |
-
"Sex": [Sex],
|
31 |
-
"BP": [BP],
|
32 |
-
"Cholesterol": [Cholesterol]
|
33 |
}))
|
34 |
# Show prediction
|
35 |
result = result[0]
|
|
|
5 |
|
6 |
model = joblib.load('model_tree.joblib')
|
7 |
unique_values = joblib.load('unique_values.joblib')
|
8 |
+
SEX_DICT = {'M':1,
|
9 |
+
'F':2}
|
10 |
+
BP_DICT = {'LOW':1,
|
11 |
+
'NORMAL':2,
|
12 |
+
'HIGH':3}
|
13 |
+
Cholesterol = {'NORMAL':1,
|
14 |
+
'HIGH':2}
|
15 |
+
|
16 |
unique_Sex = unique_values['Sex']
|
17 |
unique_BP = unique_values['BP']
|
18 |
unique_Cholesterol = unique_values['Cholesterol']
|
|
|
34 |
if clicked:
|
35 |
result=model.predict(pd.DataFrame({"Age": [Age],
|
36 |
"Na_to_K": [Na_to_K],
|
37 |
+
"Sex": [SEX_DICT[Sex]],
|
38 |
+
"BP": [BP_DICT[BP]],
|
39 |
+
"Cholesterol": [Cholesterol[Cholesterol]]
|
40 |
}))
|
41 |
# Show prediction
|
42 |
result = result[0]
|