FilipeR commited on
Commit
94cbfd9
1 Parent(s): a992e53

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -50
app.py CHANGED
@@ -1,68 +1,59 @@
 
 
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
  import spaces
5
  import torch
6
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
 
 
8
 
9
  dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
-
12
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
  MAX_IMAGE_SIZE = 2048
 
 
 
 
16
 
17
- @spaces.GPU(duration=190)
18
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
19
  if randomize_seed:
20
  seed = random.randint(0, MAX_SEED)
 
21
  generator = torch.Generator().manual_seed(seed)
 
22
  image = pipe(
23
  prompt = prompt,
24
  width = width,
25
  height = height,
26
  num_inference_steps = num_inference_steps,
27
  generator = generator,
28
- guidance_scale=guidance_scale
29
- ).images[0]
30
- return image, seed
31
-
32
- examples = [
33
- "a tiny astronaut hatching from an egg on the moon",
34
- "a cat holding a sign that says hello world",
35
- "an anime illustration of a wiener schnitzel",
36
- ]
37
 
38
- css="""
39
- #col-container {
40
- margin: 0 auto;
41
- max-width: 520px;
42
- }
43
- """
44
 
45
- with gr.Blocks(css=css) as demo:
46
-
47
  with gr.Column(elem_id="col-container"):
48
- gr.Markdown(f"""# FLUX.1 [dev]
49
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
50
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
51
- """)
52
 
53
  with gr.Row():
54
-
55
  prompt = gr.Text(
56
  label="Prompt",
57
  show_label=False,
58
- max_lines=1,
59
- placeholder="Enter your prompt",
60
- container=False,
61
- )
62
 
63
  run_button = gr.Button("Run", scale=0)
64
-
65
- result = gr.Image(label="Result", show_label=False)
 
66
 
67
  with gr.Accordion("Advanced Settings", open=False):
68
 
@@ -71,52 +62,45 @@ with gr.Blocks(css=css) as demo:
71
  minimum=0,
72
  maximum=MAX_SEED,
73
  step=1,
74
- value=0,
75
- )
76
 
77
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
78
 
79
  with gr.Row():
80
-
81
  width = gr.Slider(
82
  label="Width",
83
  minimum=256,
84
  maximum=MAX_IMAGE_SIZE,
85
  step=32,
86
- value=1024,
87
- )
88
 
89
  height = gr.Slider(
90
  label="Height",
91
  minimum=256,
92
  maximum=MAX_IMAGE_SIZE,
93
  step=32,
94
- value=1024,
95
- )
96
 
97
  with gr.Row():
98
-
99
  guidance_scale = gr.Slider(
100
  label="Guidance Scale",
101
  minimum=1,
102
  maximum=15,
103
  step=0.1,
104
- value=3.5,
105
- )
106
 
107
  num_inference_steps = gr.Slider(
108
- label="Number of inference steps",
109
  minimum=1,
110
  maximum=50,
111
  step=1,
112
- value=28,
113
- )
114
 
115
  gr.Examples(
116
- examples = examples,
117
- fn = infer,
118
- inputs = [prompt],
119
- outputs = [result, seed],
120
  cache_examples="lazy"
121
  )
122
 
 
1
+ import random
2
+
3
  import gradio as gr
4
  import numpy as np
 
5
  import spaces
6
  import torch
7
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
8
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
9
+ from gradio_imagefeed import ImageFeed
10
+
11
 
12
  dtype = torch.bfloat16
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
14
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
15
 
16
  MAX_SEED = np.iinfo(np.int32).max
17
  MAX_IMAGE_SIZE = 2048
18
+ LICENSE=f"""# Better UI for FLUX.1 [dev] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"""
19
+ CSS = "#col-container { margin: 0 auto; max-width: 900px; }"
20
+ EXAMPLES = ["a tiny elephant hatching from a turtle egg in the palm of a human hand, highly detailed textures, close-up"]
21
+
22
 
23
+ @spaces.GPU(duration=120)
24
+ def infer(prompt, seed=99999, randomize_seed=True, width=896, height=1152, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
+
28
  generator = torch.Generator().manual_seed(seed)
29
+
30
  image = pipe(
31
  prompt = prompt,
32
  width = width,
33
  height = height,
34
  num_inference_steps = num_inference_steps,
35
  generator = generator,
36
+ guidance_scale=guidance_scale).images[0]
37
+
38
+ yield image, seed
 
 
 
 
 
 
39
 
 
 
 
 
 
 
40
 
41
+ with gr.Blocks(css=CSS) as demo:
 
42
  with gr.Column(elem_id="col-container"):
43
+ gr.Markdown(LICENSE)
 
 
 
44
 
45
  with gr.Row():
 
46
  prompt = gr.Text(
47
  label="Prompt",
48
  show_label=False,
49
+ max_lines=5,
50
+ placeholder="Prompt",
51
+ container=False)
 
52
 
53
  run_button = gr.Button("Run", scale=0)
54
+
55
+ result = ImageFeed(label="Result", show_label=False)
56
+ # result = gr.Image(label="Result", show_label=False)
57
 
58
  with gr.Accordion("Advanced Settings", open=False):
59
 
 
62
  minimum=0,
63
  maximum=MAX_SEED,
64
  step=1,
65
+ value=random.randint(0, MAX_SEED))
 
66
 
67
+ randomize_seed = gr.Checkbox(label="Randomize", value=True)
68
 
69
  with gr.Row():
 
70
  width = gr.Slider(
71
  label="Width",
72
  minimum=256,
73
  maximum=MAX_IMAGE_SIZE,
74
  step=32,
75
+ value=896)
 
76
 
77
  height = gr.Slider(
78
  label="Height",
79
  minimum=256,
80
  maximum=MAX_IMAGE_SIZE,
81
  step=32,
82
+ value=1152)
 
83
 
84
  with gr.Row():
 
85
  guidance_scale = gr.Slider(
86
  label="Guidance Scale",
87
  minimum=1,
88
  maximum=15,
89
  step=0.1,
90
+ value=3)
 
91
 
92
  num_inference_steps = gr.Slider(
93
+ label="Inference Steps",
94
  minimum=1,
95
  maximum=50,
96
  step=1,
97
+ value=28)
 
98
 
99
  gr.Examples(
100
+ examples=EXAMPLES,
101
+ fn=infer,
102
+ inputs=[prompt],
103
+ outputs=[result, seed],
104
  cache_examples="lazy"
105
  )
106