Hector Salvador [Fisharp]
Structured dataclasses for requests and settings.
2bc3f5c
raw
history blame
9.87 kB
import sys
import os
import logging as log
from typing import Generator
import gradio as gr
from gradio.themes.utils import sizes
from text_generation import Client
from src.request import StarCoderRequest, StarCoderRequestConfig
# todo: remove and replace by the actual js file instead
from src.share_btn import (share_js)
from src.utils import (
get_file_as_string,
get_sections,
get_url_from_env_or_default_path,
preview
)
from constants import (
FIM_MIDDLE,
FIM_PREFIX,
FIM_SUFFIX,
END_OF_TEXT,
MIN_TEMPERATURE,
)
from settings import (
DEFAULT_PORT,
DEFAULT_STARCODER_API_PATH,
DEFAULT_STARCODER_BASE_API_PATH,
)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Gracefully exit the app if the HF_TOKEN is not set,
# printing to system `errout` the error (instead of raising an exception)
# and the expected behavior
if not HF_TOKEN:
ERR_MSG = """
Please set the HF_TOKEN environment variable with your Hugging Face API token.
You can get one by signing up at https://huggingface.co/join and then visiting
https://huggingface.co/settings/tokens."""
print(ERR_MSG, file=sys.stderr)
# gr.errors.GradioError(ERR_MSG)
# gr.close_all(verbose=False)
sys.exit(1)
API_URL_STAR = get_url_from_env_or_default_path("STARCODER_API", DEFAULT_STARCODER_API_PATH)
API_URL_BASE = get_url_from_env_or_default_path("STARCODER_BASE_API", DEFAULT_STARCODER_BASE_API_PATH)
preview("StarCoder Model URL", API_URL_STAR)
preview("StarCoderBase Model URL", API_URL_BASE)
preview("HF Token", HF_TOKEN, ofuscate=True)
# Loads the whole content of the formats.md file
# and stores it into the FORMATS variable
STATIC_PATH = "static"
FORMATS = get_file_as_string("formats.md", path=STATIC_PATH)
CSS = get_file_as_string("styles.css", path=STATIC_PATH)
community_icon_svg = get_file_as_string("community_icon.svg", path=STATIC_PATH)
loading_icon_svg = get_file_as_string("loading_icon.svg", path=STATIC_PATH)
# todo: evaluate making STATIC_PATH the default path instead of the current one
README = get_file_as_string("README.md")
# Slicing the different sections from the README
readme_sections = get_sections(README, "---")
manifest, description, disclaimer = readme_sections[:3]
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=sizes.radius_sm,
font=[
gr.themes.GoogleFont("Rubik"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
text_size=sizes.text_lg,
)
HEADERS = {
"Authorization": f"Bearer {HF_TOKEN}",
}
client_star = Client(API_URL_STAR, headers=HEADERS)
client_base = Client(API_URL_BASE, headers=HEADERS)
def get_tokens_collector(request: StarCoderRequest) -> Generator[str, None, None]:
model_client = client_star if request.settings.version == "StarCoder" else client_base
stream = model_client.generate_stream(request.prompt, **request.settings.kwargs())
for response in stream:
# print(response.token.id, response.token.text)
# if token.text != END_OF_TEXT:
if response.token.id != 0:
yield response.token.text
def get_tokens_accumulator(request: StarCoderRequest) -> Generator[str, None, None]:
# start with the prefix (if in fim_mode)
output = request.prefix if request.fim_mode else request.prompt
for token in get_tokens_collector(request=request):
output += token
yield output
# after the last token, append the suffix (if in fim_mode)
if request.fim_mode:
output += request.suffix
yield output
# Append an extra line at the end
yield output + '\n'
def get_tokens_linker(request: StarCoderRequest) -> str:
return "".join(list(get_tokens_collector(request)))
def generate(
prompt: str,
temperature = 0.9,
max_new_tokens = 256,
top_p = 0.95,
repetition_penalty = 1.0,
version = "StarCoder",
) -> Generator[str, None, None]:
request = StarCoderRequest(
prompt=prompt,
settings=StarCoderRequestConfig(
version=version,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
)
yield from get_tokens_accumulator(request)
def process_example(
prompt: str,
temperature = 0.9,
max_new_tokens = 256,
top_p = 0.95,
repetition_penalty = 1.0,
version = "StarCoder",
) -> Generator[str, None, None]:
request = StarCoderRequest(
prompt=prompt,
settings=StarCoderRequestConfig(
version=version,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
)
yield from get_tokens_linker(request)
# todo: move it into the README too
examples = [
"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
"// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
"def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_HERE>\n else:\n results.extend(list2[i+1:])\n return results",
]
with gr.Blocks(theme=theme, analytics_enabled=False, css=CSS) as demo:
with gr.Column():
gr.Markdown(description)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
placeholder="Enter your code here",
label="Code",
elem_id="q-input",
)
submit = gr.Button("Generate", variant="primary")
output = gr.Code(elem_id="q-output", lines=30)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Column():
version = gr.Dropdown(
["StarCoderBase", "StarCoder"],
value="StarCoder",
label="Version",
info="",
)
gr.Markdown(disclaimer)
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_svg, visible=True)
loading_icon = gr.HTML(loading_icon_svg, visible=True)
share_button = gr.Button(
"Share to community", elem_id="share-btn", visible=True
)
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
gr.Markdown(FORMATS)
submit.click(
generate,
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, version],
outputs=[output],
# preprocess=False,
max_batch_size=8,
show_progress=True
)
share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=16).launch(debug=True, server_port=DEFAULT_PORT)