r3gm's picture
Upload 224 files
c2dad70
raw
history blame
9.67 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import sys
import time
from dataclasses import dataclass, field
from fractions import Fraction
import torch as th
from torch import distributed, nn
from torch.nn.parallel.distributed import DistributedDataParallel
from .augment import FlipChannels, FlipSign, Remix, Shift
from .compressed import StemsSet, build_musdb_metadata, get_musdb_tracks
from .model import Demucs
from .parser import get_name, get_parser
from .raw import Rawset
from .tasnet import ConvTasNet
from .test import evaluate
from .train import train_model, validate_model
from .utils import human_seconds, load_model, save_model, sizeof_fmt
@dataclass
class SavedState:
metrics: list = field(default_factory=list)
last_state: dict = None
best_state: dict = None
optimizer: dict = None
def main():
parser = get_parser()
args = parser.parse_args()
name = get_name(parser, args)
print(f"Experiment {name}")
if args.musdb is None and args.rank == 0:
print(
"You must provide the path to the MusDB dataset with the --musdb flag. "
"To download the MusDB dataset, see https://sigsep.github.io/datasets/musdb.html.",
file=sys.stderr)
sys.exit(1)
eval_folder = args.evals / name
eval_folder.mkdir(exist_ok=True, parents=True)
args.logs.mkdir(exist_ok=True)
metrics_path = args.logs / f"{name}.json"
eval_folder.mkdir(exist_ok=True, parents=True)
args.checkpoints.mkdir(exist_ok=True, parents=True)
args.models.mkdir(exist_ok=True, parents=True)
if args.device is None:
device = "cpu"
if th.cuda.is_available():
device = "cuda"
else:
device = args.device
th.manual_seed(args.seed)
# Prevents too many threads to be started when running `museval` as it can be quite
# inefficient on NUMA architectures.
os.environ["OMP_NUM_THREADS"] = "1"
if args.world_size > 1:
if device != "cuda" and args.rank == 0:
print("Error: distributed training is only available with cuda device", file=sys.stderr)
sys.exit(1)
th.cuda.set_device(args.rank % th.cuda.device_count())
distributed.init_process_group(backend="nccl",
init_method="tcp://" + args.master,
rank=args.rank,
world_size=args.world_size)
checkpoint = args.checkpoints / f"{name}.th"
checkpoint_tmp = args.checkpoints / f"{name}.th.tmp"
if args.restart and checkpoint.exists():
checkpoint.unlink()
if args.test:
args.epochs = 1
args.repeat = 0
model = load_model(args.models / args.test)
elif args.tasnet:
model = ConvTasNet(audio_channels=args.audio_channels, samplerate=args.samplerate, X=args.X)
else:
model = Demucs(
audio_channels=args.audio_channels,
channels=args.channels,
context=args.context,
depth=args.depth,
glu=args.glu,
growth=args.growth,
kernel_size=args.kernel_size,
lstm_layers=args.lstm_layers,
rescale=args.rescale,
rewrite=args.rewrite,
sources=4,
stride=args.conv_stride,
upsample=args.upsample,
samplerate=args.samplerate
)
model.to(device)
if args.show:
print(model)
size = sizeof_fmt(4 * sum(p.numel() for p in model.parameters()))
print(f"Model size {size}")
return
optimizer = th.optim.Adam(model.parameters(), lr=args.lr)
try:
saved = th.load(checkpoint, map_location='cpu')
except IOError:
saved = SavedState()
else:
model.load_state_dict(saved.last_state)
optimizer.load_state_dict(saved.optimizer)
if args.save_model:
if args.rank == 0:
model.to("cpu")
model.load_state_dict(saved.best_state)
save_model(model, args.models / f"{name}.th")
return
if args.rank == 0:
done = args.logs / f"{name}.done"
if done.exists():
done.unlink()
if args.augment:
augment = nn.Sequential(FlipSign(), FlipChannels(), Shift(args.data_stride),
Remix(group_size=args.remix_group_size)).to(device)
else:
augment = Shift(args.data_stride)
if args.mse:
criterion = nn.MSELoss()
else:
criterion = nn.L1Loss()
# Setting number of samples so that all convolution windows are full.
# Prevents hard to debug mistake with the prediction being shifted compared
# to the input mixture.
samples = model.valid_length(args.samples)
print(f"Number of training samples adjusted to {samples}")
if args.raw:
train_set = Rawset(args.raw / "train",
samples=samples + args.data_stride,
channels=args.audio_channels,
streams=[0, 1, 2, 3, 4],
stride=args.data_stride)
valid_set = Rawset(args.raw / "valid", channels=args.audio_channels)
else:
if not args.metadata.is_file() and args.rank == 0:
build_musdb_metadata(args.metadata, args.musdb, args.workers)
if args.world_size > 1:
distributed.barrier()
metadata = json.load(open(args.metadata))
duration = Fraction(samples + args.data_stride, args.samplerate)
stride = Fraction(args.data_stride, args.samplerate)
train_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="train"),
metadata,
duration=duration,
stride=stride,
samplerate=args.samplerate,
channels=args.audio_channels)
valid_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="valid"),
metadata,
samplerate=args.samplerate,
channels=args.audio_channels)
best_loss = float("inf")
for epoch, metrics in enumerate(saved.metrics):
print(f"Epoch {epoch:03d}: "
f"train={metrics['train']:.8f} "
f"valid={metrics['valid']:.8f} "
f"best={metrics['best']:.4f} "
f"duration={human_seconds(metrics['duration'])}")
best_loss = metrics['best']
if args.world_size > 1:
dmodel = DistributedDataParallel(model,
device_ids=[th.cuda.current_device()],
output_device=th.cuda.current_device())
else:
dmodel = model
for epoch in range(len(saved.metrics), args.epochs):
begin = time.time()
model.train()
train_loss = train_model(epoch,
train_set,
dmodel,
criterion,
optimizer,
augment,
batch_size=args.batch_size,
device=device,
repeat=args.repeat,
seed=args.seed,
workers=args.workers,
world_size=args.world_size)
model.eval()
valid_loss = validate_model(epoch,
valid_set,
model,
criterion,
device=device,
rank=args.rank,
split=args.split_valid,
world_size=args.world_size)
duration = time.time() - begin
if valid_loss < best_loss:
best_loss = valid_loss
saved.best_state = {
key: value.to("cpu").clone()
for key, value in model.state_dict().items()
}
saved.metrics.append({
"train": train_loss,
"valid": valid_loss,
"best": best_loss,
"duration": duration
})
if args.rank == 0:
json.dump(saved.metrics, open(metrics_path, "w"))
saved.last_state = model.state_dict()
saved.optimizer = optimizer.state_dict()
if args.rank == 0 and not args.test:
th.save(saved, checkpoint_tmp)
checkpoint_tmp.rename(checkpoint)
print(f"Epoch {epoch:03d}: "
f"train={train_loss:.8f} valid={valid_loss:.8f} best={best_loss:.4f} "
f"duration={human_seconds(duration)}")
del dmodel
model.load_state_dict(saved.best_state)
if args.eval_cpu:
device = "cpu"
model.to(device)
model.eval()
evaluate(model,
args.musdb,
eval_folder,
rank=args.rank,
world_size=args.world_size,
device=device,
save=args.save,
split=args.split_valid,
shifts=args.shifts,
workers=args.eval_workers)
model.to("cpu")
save_model(model, args.models / f"{name}.th")
if args.rank == 0:
print("done")
done.write_text("done")
if __name__ == "__main__":
main()