File size: 13,875 Bytes
fb618bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b1b93
fb618bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import spaces
import gradio as gr
import torch
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionImg2ImgPipeline
from PIL import Image
import random
import numpy as np
import torch
import os
import json
from datetime import datetime

from pipeline_rf_inversionfree_edit import RectifiedFlowPipeline as RectifiedFlowEditPipeline


pipe_edit = RectifiedFlowEditPipeline.from_pretrained("XCLIU/2_rectified_flow_from_sd_1_5", torch_dtype=torch.float32)
pipe_edit.to("cuda")

# Function to process the image
@spaces.GPU(duration=10)
def process_image(
    image_layers, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
    max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
):
    image_with_mask = {
        "image": image_layers["background"],
        "mask": image_layers["layers"][0] if mask_input is None else mask_input
    }
    
    # Set seed
    if randomize_seed or seed is None:
        seed = random.randint(0, 2**32 - 1)
    generator = torch.Generator("cuda").manual_seed(int(seed))

    # Unpack image and mask
    if image_with_mask is None:
        return None, f"❌ Please upload an image and create a mask."
    image = image_with_mask["image"]
    mask = image_with_mask["mask"]

    if image is None or mask is None:
        return None, f"❌ Please ensure both image and mask are provided."

    # Convert images to RGB
    image = image.convert("RGB")
    mask = mask.split()[-1]  # Convert mask to grayscale

    if not edit_prompt:
        return None, f"❌ Please provide a prompt for editing."
    if not prompt:
        prompt = ""
    # Resize the mask to match the image
    # mask = mask.resize(image.size)
    with torch.autocast("cuda"):
        # Placeholder for using advanced parameters in the future
        # Adjust parameters according to advanced settings if applicable
        result = pipe_edit(
            prompt=prompt,
            edit_prompt=edit_prompt,
            input_image=image.resize((512, 512)),
            mask_image=mask.resize((512, 512)),
            negative_prompt="",
            num_inference_steps=num_inference_steps,
            guidance_scale=true_cfg,
            generator=generator,
            # save_masked_image=False,
            # output_path="",
            learning_rate=learning_rate,
            max_steps=max_steps,
            optimization_steps=optimization_steps,
            full_source_steps=max_source_steps,
        ).images[0]
    return result, f"βœ… Editing completed with seed {seed}."

# Design the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
        <style>
            body {background-color: #f5f5f5; color: #333333;}
            h1 {text-align: center; font-family: 'Helvetica', sans-serif; margin-bottom: 10px;}
            h2 {text-align: center; color: #666666; font-weight: normal; margin-bottom: 30px;}
            .gradio-container {max-width: 800px; margin: auto;}
            .footer {text-align: center; margin-top: 20px; color: #999999; font-size: 12px;}
        </style>
        """
    )
    gr.Markdown("<h1>🍲 FlowChef 🍲</h1>")
    gr.Markdown("<h2>Inversion/Gradient/Training-free Steering of <u>InstaFlow (SDv1.5) for Image Editing</u></h2>")
    gr.Markdown("<h3><p><a href='https://flowchef.github.io/'>Project Page</a> | <a href='#'>Paper</a></p> (Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)</h3>")
    # gr.Markdown("<h3>πŸ’‘ We recommend going through our <a href='#'>tutorial introduction</a> before getting started!</h3>")
    gr.Markdown("<h3>⚑ For better performance, check out our demo on <a href='https://huggingface.co/spaces/FlowChef/FlowChef-Flux1-dev'>Flux</a>!</h3>")

    # Store current state
    current_input_image = None
    current_mask = None 
    current_output_image = None
    current_params = {}

    # Images at the top
    with gr.Row():
        with gr.Column():
            image_input = gr.ImageMask(
                # source="upload",
                # tool="sketch",
                type="pil",
                label="Input Image and Mask",
                image_mode="RGBA",
                height=512,
                width=512,
            )
        with gr.Column():
            output_image = gr.Image(label="Output Image")

    # All options below
    with gr.Column():
        prompt = gr.Textbox(
            label="Prompt",
            placeholder="Describe what should appear in the masked area..."
        )
        edit_prompt = gr.Textbox(
            label="Editing Prompt",
            placeholder="Describe how you want to edit the image..."
        )
        with gr.Row():
            seed = gr.Number(label="Seed (Optional)", value=None)
            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
        num_inference_steps = gr.Slider(
            label="Inference Steps", minimum=10, maximum=100, value=50
        )
        # Advanced settings in an accordion
        with gr.Accordion("Advanced Settings", open=False):
            max_steps = gr.Slider(label="Max Steps", minimum=10, maximum=100, value=50)
            learning_rate = gr.Slider(label="Learning Rate", minimum=0.1, maximum=1.0, value=0.5)
            true_cfg = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=2)
            max_source_steps = gr.Slider(label="Max Source Steps", minimum=1, maximum=200, value=40)
            optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1)
            mask_input = gr.Image(
                type="pil",
                label="Optional Mask",
                image_mode="RGBA",
            )
        with gr.Row():
            run_button = gr.Button("Run", variant="primary")
            # save_button = gr.Button("Save Data", variant="secondary")

    # def update_visibility(selected_mode):
    #     if selected_mode == "Inpainting":
    #         return gr.update(visible=True), gr.update(visible=False)
    #     else:
    #         return gr.update(visible=True), gr.update(visible=True)

    # mode.change(
    #     update_visibility,
    #     inputs=mode,
    #     outputs=[prompt, edit_prompt],
    # )

    def run_and_update_status(
        image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
        max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
    ):
        result_image, result_status = process_image(
            image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
            max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
        )
        
        # Store current state
        global current_input_image, current_mask, current_output_image, current_params

        current_input_image = image_with_mask["background"] if image_with_mask else None
        current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None)
        current_output_image = result_image
        current_params = {
            "prompt": prompt,
            "edit_prompt": edit_prompt,
            "seed": seed,
            "randomize_seed": randomize_seed,
            "num_inference_steps": num_inference_steps,
            "max_steps": max_steps,
            "learning_rate": learning_rate,
            "max_source_steps": max_source_steps,
            "optimization_steps": optimization_steps,
            "true_cfg": true_cfg,
        }
        
        return result_image

    def save_data():
        if not os.path.exists("saved_results"):
            os.makedirs("saved_results")
            
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        save_dir = os.path.join("saved_results", timestamp)
        os.makedirs(save_dir)
        
        # Save images
        if current_input_image:
            current_input_image.save(os.path.join(save_dir, "input.png"))
        if current_mask:
            current_mask.save(os.path.join(save_dir, "mask.png"))
        if current_output_image:
            current_output_image.save(os.path.join(save_dir, "output.png"))
            
        # Save parameters
        with open(os.path.join(save_dir, "parameters.json"), "w") as f:
            json.dump(current_params, f, indent=4)
            
        return f"βœ… Data saved in {save_dir}"

    run_button.click(
        fn=run_and_update_status,
        inputs=[
            image_input,
            prompt,
            edit_prompt,
            seed,
            randomize_seed,
            num_inference_steps,
            max_steps,
            learning_rate,
            max_source_steps,
            optimization_steps,
            true_cfg,
            mask_input
        ],
        outputs=output_image,
    )

    # save_button.click(fn=save_data)

    gr.Markdown(
        "<div class='footer'>Developed with ❀️ using InstaFlow (Stable Diffusion v1.5) and Gradio by <a href='https://maitreyapatel.com'>Maitreya Patel</a></div>"
    )

    def load_example_image_with_mask(image_path):
        # Load the image
        image = Image.open(image_path)
        # Create an empty mask of the same size
        mask = Image.new('L', image.size, 0)
        return {"background": image, "layers": [mask], "composite": image}

    examples_dir = "assets"
    volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg"))
    dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp"))

    gr.Examples(
        examples=[
            [
                "./saved_results/20241129_154837/input.png",  # image with mask
                "./saved_results/20241129_154837/mask.png",
                "./saved_results/20241129_154837/output.png",
                "a cat",  # prompt
                "a tiger",  # edit_prompt 
                0,  # seed
                True,  # randomize_seed
                50,  # num_inference_steps
                50,  # max_steps
                0.5,  # learning_rate
                20,  # max_source_steps
                5,  # optimization_steps
                2,  # true_cfg
            ],
            [
                "./saved_results/20241129_195331/input.png",  # image with mask
                "./saved_results/20241129_195331/mask.png",
                "./saved_results/20241129_195331/output.png",
                "a cat",  # prompt
                "a silver sculpture of cat",  # edit_prompt 
                0,  # seed
                True,  # randomize_seed
                50,  # num_inference_steps
                50,  # max_steps
                0.5,  # learning_rate
                20,  # max_source_steps
                5,  # optimization_steps
                2,  # true_cfg
            ],
            [
                "./saved_results/20241129_160439/input.png",  # image with mask
                "./saved_results/20241129_160439/mask.png",
                "./saved_results/20241129_160439/output.png",
                "a dog",  # prompt
                "a lion",  # edit_prompt 
                0,  # seed
                True,  # randomize_seed
                50,  # num_inference_steps
                20,  # max_steps
                0.5,  # learning_rate
                20,  # max_source_steps
                5,  # optimization_steps
                4,  # true_cfg
            ],
            [
                "./saved_results/20241129_161118/input.png",  # image with mask
                "./saved_results/20241129_161118/mask.png",
                "./saved_results/20241129_161118/output.png",
                "two birds sitting on a branch",  # prompt
                "two origami birds sitting on a branch",  # edit_prompt 
                0,  # seed
                True,  # randomize_seed
                50,  # num_inference_steps
                50,  # max_steps
                0.5,  # learning_rate
                30,  # max_source_steps
                2,  # optimization_steps
                2,  # true_cfg
            ],
            [
                "./saved_results/20241129_161602/input.png",  # image with mask
                "./saved_results/20241129_161602/mask.png",
                "./saved_results/20241129_161602/output.png",
                "a woman with long hair sitting in the sand at sunset",  # prompt
                "a woman with short hair sitting in the sand at sunset",  # edit_prompt 
                0,  # seed
                True,  # randomize_seed
                50,  # num_inference_steps
                30,  # max_steps
                0.5,  # learning_rate
                20,  # max_source_steps
                2,  # optimization_steps
                2,  # true_cfg
            ],
            [
                "./saved_results/20241129_160150/input.png",  # image with mask
                "./saved_results/20241129_160150/mask.png",
                "./saved_results/20241129_160150/output.png",
                "A cute rabbit with big eyes",  # prompt
                "A cute pig with big eyes",  # edit_prompt 
                0,  # seed
                True,  # randomize_seed
                50,  # num_inference_steps
                40,  # max_steps
                0.5,  # learning_rate
                20,  # max_source_steps
                5,  # optimization_steps
                4,  # true_cfg
            ],
        ],
        inputs=[
            image_input,
            mask_input,
            output_image,
            prompt,
            edit_prompt,
            seed,
            randomize_seed,
            num_inference_steps,
            max_steps,
            learning_rate,
            max_source_steps,
            optimization_steps,
            true_cfg,
        ],
        # outputs=[output_image],
        # fn=run_and_update_status,
        # cache_examples=True,
    )
demo.launch()