import spaces
import gradio as gr
import torch
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionImg2ImgPipeline
from PIL import Image
import random
import numpy as np
import torch
import os
import json
from datetime import datetime
from pipeline_rf_inversionfree_edit import RectifiedFlowPipeline as RectifiedFlowEditPipeline
pipe_edit = RectifiedFlowEditPipeline.from_pretrained("XCLIU/2_rectified_flow_from_sd_1_5", torch_dtype=torch.float32)
pipe_edit.to("cuda")
# Function to process the image
@spaces.GPU(duration=10)
def process_image(
image_layers, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
):
image_with_mask = {
"image": image_layers["background"],
"mask": image_layers["layers"][0] if mask_input is None else mask_input
}
# Set seed
if randomize_seed or seed is None:
seed = random.randint(0, 2**32 - 1)
generator = torch.Generator("cuda").manual_seed(int(seed))
# Unpack image and mask
if image_with_mask is None:
return None, f"❌ Please upload an image and create a mask."
image = image_with_mask["image"]
mask = image_with_mask["mask"]
if image is None or mask is None:
return None, f"❌ Please ensure both image and mask are provided."
# Convert images to RGB
image = image.convert("RGB")
mask = mask.split()[-1] # Convert mask to grayscale
if not edit_prompt:
return None, f"❌ Please provide a prompt for editing."
if not prompt:
prompt = ""
# Resize the mask to match the image
# mask = mask.resize(image.size)
with torch.autocast("cuda"):
# Placeholder for using advanced parameters in the future
# Adjust parameters according to advanced settings if applicable
result = pipe_edit(
prompt=prompt,
edit_prompt=edit_prompt,
input_image=image.resize((512, 512)),
mask_image=mask.resize((512, 512)),
negative_prompt="",
num_inference_steps=num_inference_steps,
guidance_scale=true_cfg,
generator=generator,
# save_masked_image=False,
# output_path="",
learning_rate=learning_rate,
max_steps=max_steps,
optimization_steps=optimization_steps,
full_source_steps=max_source_steps,
).images[0]
return result, f"✅ Editing completed with seed {seed}."
# Design the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
"""
)
gr.Markdown("
🍲 FlowChef 🍲
")
gr.Markdown("Inversion/Gradient/Training-free Steering of InstaFlow (SDv1.5) for Image Editing
")
gr.Markdown("Project Page | Paper
(Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)")
# gr.Markdown("💡 We recommend going through our tutorial introduction before getting started!
")
gr.Markdown("⚡ For better performance, check out our demo on Flux!
")
# Store current state
current_input_image = None
current_mask = None
current_output_image = None
current_params = {}
# Images at the top
with gr.Row():
with gr.Column():
image_input = gr.ImageMask(
# source="upload",
# tool="sketch",
type="pil",
label="Input Image and Mask",
image_mode="RGBA",
height=512,
width=512,
)
with gr.Column():
output_image = gr.Image(label="Output Image")
# All options below
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe what should appear in the masked area..."
)
edit_prompt = gr.Textbox(
label="Editing Prompt",
placeholder="Describe how you want to edit the image..."
)
with gr.Row():
seed = gr.Number(label="Seed (Optional)", value=None)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
num_inference_steps = gr.Slider(
label="Inference Steps", minimum=10, maximum=100, value=50
)
# Advanced settings in an accordion
with gr.Accordion("Advanced Settings", open=False):
max_steps = gr.Slider(label="Max Steps", minimum=10, maximum=100, value=50)
learning_rate = gr.Slider(label="Learning Rate", minimum=0.1, maximum=1.0, value=0.5)
true_cfg = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=2)
max_source_steps = gr.Slider(label="Max Source Steps", minimum=1, maximum=200, value=40)
optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1)
mask_input = gr.Image(
type="pil",
label="Optional Mask",
image_mode="RGBA",
)
with gr.Row():
run_button = gr.Button("Run", variant="primary")
# save_button = gr.Button("Save Data", variant="secondary")
# def update_visibility(selected_mode):
# if selected_mode == "Inpainting":
# return gr.update(visible=True), gr.update(visible=False)
# else:
# return gr.update(visible=True), gr.update(visible=True)
# mode.change(
# update_visibility,
# inputs=mode,
# outputs=[prompt, edit_prompt],
# )
def run_and_update_status(
image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
):
result_image, result_status = process_image(
image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
)
# Store current state
global current_input_image, current_mask, current_output_image, current_params
current_input_image = image_with_mask["background"] if image_with_mask else None
current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None)
current_output_image = result_image
current_params = {
"prompt": prompt,
"edit_prompt": edit_prompt,
"seed": seed,
"randomize_seed": randomize_seed,
"num_inference_steps": num_inference_steps,
"max_steps": max_steps,
"learning_rate": learning_rate,
"max_source_steps": max_source_steps,
"optimization_steps": optimization_steps,
"true_cfg": true_cfg,
}
return result_image
def save_data():
if not os.path.exists("saved_results"):
os.makedirs("saved_results")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = os.path.join("saved_results", timestamp)
os.makedirs(save_dir)
# Save images
if current_input_image:
current_input_image.save(os.path.join(save_dir, "input.png"))
if current_mask:
current_mask.save(os.path.join(save_dir, "mask.png"))
if current_output_image:
current_output_image.save(os.path.join(save_dir, "output.png"))
# Save parameters
with open(os.path.join(save_dir, "parameters.json"), "w") as f:
json.dump(current_params, f, indent=4)
return f"✅ Data saved in {save_dir}"
run_button.click(
fn=run_and_update_status,
inputs=[
image_input,
prompt,
edit_prompt,
seed,
randomize_seed,
num_inference_steps,
max_steps,
learning_rate,
max_source_steps,
optimization_steps,
true_cfg,
mask_input
],
outputs=output_image,
)
# save_button.click(fn=save_data)
gr.Markdown(
""
)
def load_example_image_with_mask(image_path):
# Load the image
image = Image.open(image_path)
# Create an empty mask of the same size
mask = Image.new('L', image.size, 0)
return {"background": image, "layers": [mask], "composite": image}
examples_dir = "assets"
volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg"))
dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp"))
gr.Examples(
examples=[
[
"./saved_results/20241129_154837/input.png", # image with mask
"./saved_results/20241129_154837/mask.png",
"./saved_results/20241129_154837/output.png",
"a cat", # prompt
"a tiger", # edit_prompt
0, # seed
True, # randomize_seed
50, # num_inference_steps
50, # max_steps
0.5, # learning_rate
20, # max_source_steps
5, # optimization_steps
2, # true_cfg
],
[
"./saved_results/20241129_195331/input.png", # image with mask
"./saved_results/20241129_195331/mask.png",
"./saved_results/20241129_195331/output.png",
"a cat", # prompt
"a silver sculpture of cat", # edit_prompt
0, # seed
True, # randomize_seed
50, # num_inference_steps
50, # max_steps
0.5, # learning_rate
20, # max_source_steps
5, # optimization_steps
2, # true_cfg
],
[
"./saved_results/20241129_160439/input.png", # image with mask
"./saved_results/20241129_160439/mask.png",
"./saved_results/20241129_160439/output.png",
"a dog", # prompt
"a lion", # edit_prompt
0, # seed
True, # randomize_seed
50, # num_inference_steps
20, # max_steps
0.5, # learning_rate
20, # max_source_steps
5, # optimization_steps
4, # true_cfg
],
[
"./saved_results/20241129_161118/input.png", # image with mask
"./saved_results/20241129_161118/mask.png",
"./saved_results/20241129_161118/output.png",
"two birds sitting on a branch", # prompt
"two origami birds sitting on a branch", # edit_prompt
0, # seed
True, # randomize_seed
50, # num_inference_steps
50, # max_steps
0.5, # learning_rate
30, # max_source_steps
2, # optimization_steps
2, # true_cfg
],
[
"./saved_results/20241129_161602/input.png", # image with mask
"./saved_results/20241129_161602/mask.png",
"./saved_results/20241129_161602/output.png",
"a woman with long hair sitting in the sand at sunset", # prompt
"a woman with short hair sitting in the sand at sunset", # edit_prompt
0, # seed
True, # randomize_seed
50, # num_inference_steps
30, # max_steps
0.5, # learning_rate
20, # max_source_steps
2, # optimization_steps
2, # true_cfg
],
[
"./saved_results/20241129_160150/input.png", # image with mask
"./saved_results/20241129_160150/mask.png",
"./saved_results/20241129_160150/output.png",
"A cute rabbit with big eyes", # prompt
"A cute pig with big eyes", # edit_prompt
0, # seed
True, # randomize_seed
50, # num_inference_steps
40, # max_steps
0.5, # learning_rate
20, # max_source_steps
5, # optimization_steps
4, # true_cfg
],
],
inputs=[
image_input,
mask_input,
output_image,
prompt,
edit_prompt,
seed,
randomize_seed,
num_inference_steps,
max_steps,
learning_rate,
max_source_steps,
optimization_steps,
true_cfg,
],
# outputs=[output_image],
# fn=run_and_update_status,
# cache_examples=True,
)
demo.launch()