diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..9c562dd96e445205bb2bf6b43c5c1b95a8713576 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_211621/input.png filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_211904/input.png filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_212001/input.png filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_212022/input.png filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_212052/input.png filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_212110/input.png filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_212155/input.png filter=lfs diff=lfs merge=lfs -text
+saved_results/20241129_212220/input.png filter=lfs diff=lfs merge=lfs -text
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..0efcdede32830bf45cc66d7a2b27e1f8ae03590a
--- /dev/null
+++ b/app.py
@@ -0,0 +1,317 @@
+import spaces
+import gradio as gr
+import torch
+from PIL import Image
+import random
+import numpy as np
+import torch
+import os
+import json
+from datetime import datetime
+
+from pipeline_rf import RectifiedFlowPipeline
+
+# Load the Stable Diffusion Inpainting model
+pipe = RectifiedFlowPipeline.from_pretrained("XCLIU/2_rectified_flow_from_sd_1_5", torch_dtype=torch.float32)
+pipe.to("cuda") # Comment this line if GPU is not available
+
+# Function to process the image
+@spaces.GPU(duration=20)
+def process_image(
+ image_layers, prompt, seed, randomize_seed, num_inference_steps,
+ max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
+):
+ image_with_mask = {
+ "image": image_layers["background"],
+ "mask": image_layers["layers"][0] if mask_input is None else mask_input
+ }
+
+ # Set seed
+ if randomize_seed or seed is None:
+ seed = random.randint(0, 2**32 - 1)
+ generator = torch.Generator("cuda").manual_seed(int(seed))
+
+ # Unpack image and mask
+ if image_with_mask is None:
+ return None, f"❌ Please upload an image and create a mask."
+ image = image_with_mask["image"]
+ mask = image_with_mask["mask"]
+
+ if image is None or mask is None:
+ return None, f"❌ Please ensure both image and mask are provided."
+
+ # Convert images to RGB
+ image = image.convert("RGB")
+ mask = mask.split()[-1] # Convert mask to grayscale
+
+ if not prompt:
+ return None, f"❌ Please provide a prompt for inpainting."
+ with torch.autocast("cuda"):
+ # Placeholder for using advanced parameters in the future
+ # Adjust parameters according to advanced settings if applicable
+ result = pipe(
+ prompt=prompt,
+ negative_prompt="",
+ input_image=image.resize((512, 512)),
+ mask_image=mask.resize((512, 512)),
+ num_inference_steps=num_inference_steps,
+ guidance_scale=0.0,
+ generator=generator,
+ save_masked_image=True,
+ output_path="test.png",
+ learning_rate=learning_rate,
+ max_steps=max_steps,
+ optimization_steps=optimization_steps,
+ inverseproblem=inverseproblem
+ ).images[0]
+ return result, f"✅ Inpainting completed with seed {seed}."
+
+# Design the Gradio interface
+with gr.Blocks() as demo:
+ gr.Markdown(
+ """
+
+ """
+ )
+ gr.Markdown("
🍲 FlowChef 🍲
")
+ gr.Markdown("Inversion/Gradient/Training-free Steering of InstaFlow (SDv1.5) for Inpainting (Inverse Problem)
")
+ gr.Markdown("Project Page | Paper
(Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)")
+ gr.Markdown("💡 We recommend going through our tutorial introduction before getting started!
")
+ gr.Markdown("⚡ For better performance, check out our demo on Flux!
")
+
+ # Store current state
+ current_input_image = None
+ current_mask = None
+ current_output_image = None
+ current_params = {}
+
+ # Images at the top
+ with gr.Row():
+ with gr.Column():
+ image_input = gr.ImageMask(
+ # source="upload",
+ # tool="sketch",
+ type="pil",
+ label="Input Image and Mask",
+ image_mode="RGBA",
+ height=512,
+ width=512,
+ )
+ with gr.Column():
+ output_image = gr.Image(label="Output Image")
+
+ # All options below
+ with gr.Column():
+ prompt = gr.Textbox(
+ label="Prompt",
+ placeholder="Describe what should appear in the masked area..."
+ )
+ with gr.Row():
+ seed = gr.Number(label="Seed (Optional)", value=None)
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
+ num_inference_steps = gr.Slider(
+ label="Inference Steps", minimum=50, maximum=200, value=100
+ )
+ # Advanced settings in an accordion
+ with gr.Accordion("Advanced Settings", open=False):
+ max_steps = gr.Slider(label="Max Steps", minimum=50, maximum=200, value=200)
+ learning_rate = gr.Slider(label="Learning Rate", minimum=0.01, maximum=0.5, value=0.02)
+ optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1)
+ inverseproblem = gr.Checkbox(label="Apply mask on pixel space", value=False, info="Enables inverse problem formulation for inpainting by masking the RGB image itself. Hence, to avoid artifacts we increase the mask size manually during inference.")
+ mask_input = gr.Image(
+ type="pil",
+ label="Optional Mask",
+ image_mode="RGBA",
+ )
+ with gr.Row():
+ run_button = gr.Button("Run", variant="primary")
+ # save_button = gr.Button("Save Data", variant="secondary")
+
+ # def update_visibility(selected_mode):
+ # if selected_mode == "Inpainting":
+ # return gr.update(visible=True), gr.update(visible=False)
+ # else:
+ # return gr.update(visible=True), gr.update(visible=True)
+
+ # mode.change(
+ # update_visibility,
+ # inputs=mode,
+ # outputs=[prompt, edit_prompt],
+ # )
+
+ def run_and_update_status(
+ image_with_mask, prompt, seed, randomize_seed, num_inference_steps,
+ max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
+ ):
+ result_image, result_status = process_image(
+ image_with_mask, prompt, seed, randomize_seed, num_inference_steps,
+ max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
+ )
+
+ # Store current state
+ global current_input_image, current_mask, current_output_image, current_params
+
+ current_input_image = image_with_mask["background"] if image_with_mask else None
+ current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None)
+ current_output_image = result_image
+ current_params = {
+ "prompt": prompt,
+ "seed": seed,
+ "randomize_seed": randomize_seed,
+ "num_inference_steps": num_inference_steps,
+ "max_steps": max_steps,
+ "learning_rate": learning_rate,
+ "optimization_steps": optimization_steps,
+ "inverseproblem": inverseproblem,
+ }
+
+ return result_image
+
+ def save_data():
+ if not os.path.exists("saved_results"):
+ os.makedirs("saved_results")
+
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
+ save_dir = os.path.join("saved_results", timestamp)
+ os.makedirs(save_dir)
+
+ # Save images
+ if current_input_image:
+ current_input_image.save(os.path.join(save_dir, "input.png"))
+ if current_mask:
+ current_mask.save(os.path.join(save_dir, "mask.png"))
+ if current_output_image:
+ current_output_image.save(os.path.join(save_dir, "output.png"))
+
+ # Save parameters
+ with open(os.path.join(save_dir, "parameters.json"), "w") as f:
+ json.dump(current_params, f, indent=4)
+
+ return f"✅ Data saved in {save_dir}"
+
+ run_button.click(
+ fn=run_and_update_status,
+ inputs=[
+ image_input,
+ prompt,
+ seed,
+ randomize_seed,
+ num_inference_steps,
+ max_steps,
+ learning_rate,
+ optimization_steps,
+ inverseproblem,
+ mask_input
+ ],
+ outputs=output_image,
+ )
+
+ # save_button.click(fn=save_data)
+
+ gr.Markdown(
+ ""
+ )
+
+ def load_example_image_with_mask(image_path):
+ # Load the image
+ image = Image.open(image_path)
+ # Create an empty mask of the same size
+ mask = Image.new('L', image.size, 0)
+ return {"background": image, "layers": [mask], "composite": image}
+
+ examples_dir = "assets"
+ volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg"))
+ dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp"))
+
+ gr.Examples(
+ examples=[
+ [
+ "./saved_results/20241129_210517/input.png", # image with mask
+ "./saved_results/20241129_210517/mask.png",
+ "./saved_results/20241129_210517/output.png",
+ "a cat", # prompt
+ 0, # seed
+ True, # randomize_seed
+ 200, # num_inference_steps
+ 200, # max_steps
+ 0.1, # learning_rate
+ 1, # optimization_steps
+ False,
+ ],
+ [
+ "./saved_results/20241129_211124/input.png", # image with mask
+ "./saved_results/20241129_211124/mask.png",
+ "./saved_results/20241129_211124/output.png",
+ " ", # prompt
+ 0, # seed
+ True, # randomize_seed
+ 200, # num_inference_steps
+ 200, # max_steps
+ 0.1, # learning_rate
+ 5, # optimization_steps
+ False,
+ ],
+ [
+ "./saved_results/20241129_212001/input.png", # image with mask
+ "./saved_results/20241129_212001/mask.png",
+ "./saved_results/20241129_212001/output.png",
+ " ", # prompt
+ 52, # seed
+ False, # randomize_seed
+ 200, # num_inference_steps
+ 200, # max_steps
+ 0.02, # learning_rate
+ 10, # optimization_steps
+ True,
+ ],
+ [
+ "./saved_results/20241129_212052/input.png", # image with mask
+ "./saved_results/20241129_212052/mask.png",
+ "./saved_results/20241129_212052/output.png",
+ " ", # prompt
+ 52, # seed
+ False, # randomize_seed
+ 200, # num_inference_steps
+ 200, # max_steps
+ 0.02, # learning_rate
+ 10, # optimization_steps
+ True,
+ ],
+ [
+ "./saved_results/20241129_212155/input.png", # image with mask
+ "./saved_results/20241129_212155/mask.png",
+ "./saved_results/20241129_212155/output.png",
+ " ", # prompt
+ 52, # seed
+ False, # randomize_seed
+ 200, # num_inference_steps
+ 200, # max_steps
+ 0.02, # learning_rate
+ 10, # optimization_steps
+ True,
+ ],
+ ],
+ inputs=[
+ image_input,
+ mask_input,
+ output_image,
+ prompt,
+ seed,
+ randomize_seed,
+ num_inference_steps,
+ max_steps,
+ learning_rate,
+ optimization_steps,
+ inverseproblem
+ ],
+ # outputs=[output_image],
+ # fn=run_and_update_status,
+ # cache_examples=True,
+ )
+demo.launch()
diff --git a/assets/dog.webp b/assets/dog.webp
new file mode 100644
index 0000000000000000000000000000000000000000..a6a06d82b3005294c420d83f59f3a8c1bf9ec13a
Binary files /dev/null and b/assets/dog.webp differ
diff --git a/assets/vulcano.jpg b/assets/vulcano.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2433ee61e0a507a77cf61595f6c4d15bffc9f543
Binary files /dev/null and b/assets/vulcano.jpg differ
diff --git a/assets/vulcano_mask.webp b/assets/vulcano_mask.webp
new file mode 100644
index 0000000000000000000000000000000000000000..3293b6c76c6a3fbe05fd0b70031d19a2059f9079
Binary files /dev/null and b/assets/vulcano_mask.webp differ
diff --git a/pipeline_rf.py b/pipeline_rf.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec7bc422b2e446069956b92fa8e4ea187b3000df
--- /dev/null
+++ b/pipeline_rf.py
@@ -0,0 +1,732 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Union
+
+import torch
+from packaging import version
+from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
+
+from diffusers.configuration_utils import FrozenDict
+from diffusers.image_processor import VaeImageProcessor
+from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
+from diffusers.models import AutoencoderKL, UNet2DConditionModel
+from diffusers.models.lora import adjust_lora_scale_text_encoder
+from diffusers.schedulers import KarrasDiffusionSchedulers
+from diffusers.utils import (
+ deprecate,
+ logging,
+ replace_example_docstring,
+)
+from diffusers.utils.torch_utils import randn_tensor
+from diffusers.pipelines.pipeline_utils import DiffusionPipeline
+from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
+from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
+
+import os
+import torch
+
+from torchvision import transforms as TF
+
+import sys
+sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
+sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+def retrieve_latents(
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
+):
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
+ return encoder_output.latent_dist.sample(generator)
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
+ return encoder_output.latent_dist.mode()
+ elif hasattr(encoder_output, "latents"):
+ return encoder_output.latents
+ else:
+ raise AttributeError("Could not access latents of provided encoder_output")
+
+
+def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
+ """
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
+ """
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
+ # rescale the results from guidance (fixes overexposure)
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
+ return noise_cfg
+
+
+class RectifiedFlowPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
+ r"""
+ Pipeline for text-to-image generation using Rectified Flow and Euler discretization.
+ This customized pipeline is based on StableDiffusionPipeline from the official Diffusers library (0.21.4)
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
+
+ The pipeline also inherits the following loading methods:
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
+ - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
+ - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
+ text_encoder ([`~transformers.CLIPTextModel`]):
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
+ tokenizer ([`~transformers.CLIPTokenizer`]):
+ A `CLIPTokenizer` to tokenize text.
+ unet ([`UNet2DConditionModel`]):
+ A `UNet2DConditionModel` to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
+ about a model's potential harms.
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
+ """
+ model_cpu_offload_seq = "text_encoder->unet->vae"
+ _optional_components = ["safety_checker", "feature_extractor"]
+ _exclude_from_cpu_offload = ["safety_checker"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: KarrasDiffusionSchedulers,
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPImageProcessor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
+ version.parse(unet.config._diffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def enable_vae_slicing(self):
+ r"""
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
+ """
+ self.vae.enable_slicing()
+
+ def disable_vae_slicing(self):
+ r"""
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_slicing()
+
+ def enable_vae_tiling(self):
+ r"""
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
+ processing larger images.
+ """
+ self.vae.enable_tiling()
+
+ def disable_vae_tiling(self):
+ r"""
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_tiling()
+
+ def _encode_prompt(
+ self,
+ prompt,
+ device,
+ num_images_per_prompt,
+ do_classifier_free_guidance,
+ negative_prompt=None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ lora_scale: Optional[float] = None,
+ ):
+ deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
+ deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
+
+ prompt_embeds_tuple = self.encode_prompt(
+ prompt=prompt,
+ device=device,
+ num_images_per_prompt=num_images_per_prompt,
+ do_classifier_free_guidance=do_classifier_free_guidance,
+ negative_prompt=negative_prompt,
+ prompt_embeds=prompt_embeds,
+ negative_prompt_embeds=negative_prompt_embeds,
+ lora_scale=lora_scale,
+ )
+
+ # concatenate for backwards comp
+ prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
+
+ return prompt_embeds
+
+ def encode_prompt(
+ self,
+ prompt,
+ device,
+ num_images_per_prompt,
+ do_classifier_free_guidance,
+ negative_prompt=None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ lora_scale: Optional[float] = None,
+ ):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ prompt to be encoded
+ device: (`torch.device`):
+ torch device
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ lora_scale (`float`, *optional*):
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+ """
+ # set lora scale so that monkey patched LoRA
+ # function of text encoder can correctly access it
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
+ self._lora_scale = lora_scale
+
+ # dynamically adjust the LoRA scale
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
+
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ if prompt_embeds is None:
+ # textual inversion: procecss multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
+ )
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = text_inputs.attention_mask.to(device)
+ else:
+ attention_mask = None
+
+ prompt_embeds = self.text_encoder(
+ text_input_ids.to(device),
+ attention_mask=attention_mask,
+ )
+ prompt_embeds = prompt_embeds[0]
+
+ if self.text_encoder is not None:
+ prompt_embeds_dtype = self.text_encoder.dtype
+ elif self.unet is not None:
+ prompt_embeds_dtype = self.unet.dtype
+ else:
+ prompt_embeds_dtype = prompt_embeds.dtype
+
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+ bs_embed, seq_len, _ = prompt_embeds.shape
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ # textual inversion: procecss multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
+
+ max_length = prompt_embeds.shape[1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = uncond_input.attention_mask.to(device)
+ else:
+ attention_mask = None
+
+ negative_prompt_embeds = self.text_encoder(
+ uncond_input.input_ids.to(device),
+ attention_mask=attention_mask,
+ )
+ negative_prompt_embeds = negative_prompt_embeds[0]
+
+ if do_classifier_free_guidance:
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = negative_prompt_embeds.shape[1]
+
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+ return prompt_embeds, negative_prompt_embeds
+
+ def run_safety_checker(self, image, device, dtype):
+ if self.safety_checker is None:
+ has_nsfw_concept = None
+ else:
+ if torch.is_tensor(image):
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
+ else:
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
+ )
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
+ deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
+
+ latents = 1 / self.vae.config.scaling_factor * latents
+ image = self.vae.decode(latents, return_dict=False)[0]
+ image = (image / 2 + 0.5).clamp(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(
+ self,
+ prompt,
+ height,
+ width,
+ callback_steps,
+ negative_prompt=None,
+ prompt_embeds=None,
+ negative_prompt_embeds=None,
+ ):
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ if prompt is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt is None and prompt_embeds is None:
+ raise ValueError(
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+ )
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if negative_prompt is not None and negative_prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+ )
+
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
+ raise ValueError(
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+ f" {negative_prompt_embeds.shape}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+ else:
+ latents = latents.to(device)
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @torch.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]] = None,
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+ latents: Optional[torch.FloatTensor] = None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
+ callback_steps: int = 1,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ guidance_rescale: float = 0.0,
+ optimization_steps: int = 1,
+ learning_rate: float = 0.05,
+ max_steps: int = 50,
+ input_image = None,
+ mask_image = None,
+ save_masked_image = False,
+ output_path : str = "",
+ inverseproblem: bool = False,
+ ):
+ assert input_image is not None, "Please provide an input image for the inpainting task."
+
+ # 0. Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs
+ self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
+
+ # 2. Define call parameters
+ batch_size = 1 if prompt is None else (1 if isinstance(prompt, str) else len(prompt))
+ device = self._execution_device
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
+ prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt,
+ prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
+ lora_scale=cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None,
+ )
+ if do_classifier_free_guidance:
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
+
+ # 4. Prepare timesteps
+ timesteps = [(1. - i/num_inference_steps) * 1000. for i in range(num_inference_steps)]
+
+ # Convert PIL image to tensor
+ mask_image = mask_image.convert("L")
+ mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.unet.dtype)
+ mask = TF.Resize(input_image.size, interpolation=TF.InterpolationMode.NEAREST)(mask)
+ mask = (mask > 0.5)
+ mask = ~mask
+
+ # 4. Preprocess image
+ image = self.image_processor.preprocess(input_image).to(device=device, dtype=self.unet.dtype)
+ if inverseproblem:
+ image = image*mask
+ image = image.to(device=device, dtype=self.unet.dtype)
+ noisy_image = image.detach().clone()
+
+ latents = retrieve_latents(self.vae.encode(noisy_image), generator=generator) * self.vae.config.scaling_factor
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.config.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt, num_channels_latents, height, width,
+ prompt_embeds.dtype, device, generator, latents,
+ )
+
+ # 6. Prepare extra step kwargs
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ print(mask.shape)
+ h, w = latents.shape[2], latents.shape[3]
+ mask = TF.Resize((h, w))(mask.to(device))
+ mask = (~(mask > 0.1)).float()
+
+ # Slightly dilate the mask to increase coverage
+ # We do this to ensure that the VAE model does not have the adverse effect due to the compression
+ if inverseproblem:
+ print("Dilating the masks.")
+ kernel_size = 3 # Decreased from 3 to 2
+ kernel = torch.ones((1, 1, kernel_size, kernel_size), device=device)
+ mask = torch.nn.functional.conv2d(
+ mask.unsqueeze(0),
+ kernel,
+ padding=kernel_size//2
+ ).squeeze(0)
+ mask = torch.clamp(mask, 0, 1)
+
+ mask = (mask > 0.1).float()
+
+ # Apply the mask to latents_copy
+ random_latents = self.prepare_latents(
+ batch_size * num_images_per_prompt, num_channels_latents, height, width,
+ prompt_embeds.dtype, device, generator
+ )
+
+ bool_mask = mask.bool().unsqueeze(0).expand_as(latents)
+ mask = ~bool_mask
+
+ masked_latents = (latents * mask).clone().detach()
+ if save_masked_image:
+ masked_image = self.vae.decode(masked_latents / self.vae.config.scaling_factor, return_dict=False)[0]
+ masked_image = self.image_processor.postprocess(masked_image, output_type="pil")[0]
+ masked_image_path = output_path.replace(".", "_ip_degraded.")
+ masked_image.save(masked_image_path)
+ print(f"Masked image saved to: {masked_image_path}")
+
+ latents = random_latents.clone().detach()
+
+ self.unet.eval()
+ self.vae.eval()
+
+ # Initialize timing and memory tracking if not already done
+ if not hasattr(self, 'avg_total_time'):
+ self.avg_total_time = 0
+ self.num_calls = 0
+ if not hasattr(self, 'max_memory'):
+ self.max_memory = 0
+
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ latents = self.perform_denoising_step(
+ latents, t, prompt_embeds, do_classifier_free_guidance, guidance_scale,
+ device, i, optimization_steps, learning_rate,
+ max_steps, timesteps, mask, masked_latents, noisy_image
+ )
+
+ if callback is not None and i % callback_steps == 0:
+ callback(i // getattr(self.scheduler, "order", 1), t, latents)
+
+ progress_bar.update()
+
+ # 10. Post-processing
+ image = self.post_process_image(latents, output_type)
+
+ # 11. Offload all models
+ self.maybe_free_model_hooks()
+
+ if not return_dict:
+ return (image, None)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
+
+ def load_and_preprocess_image(self, image_path, custom_image_processor, device):
+ from diffusers.utils import load_image
+ img = load_image(image_path)
+ img = img.resize((512, 512))
+ return custom_image_processor(img).unsqueeze(0).to(device)
+
+ def perform_denoising_step(self, latents, t, prompt_embeds, do_classifier_free_guidance, guidance_scale,
+ device, step, optimization_steps, learning_rate,
+ max_steps, timesteps, mask, masked_latents, noisy_image):
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
+ vec_t = torch.ones((latent_model_input.shape[0],), device=latents.device) * t
+ v_pred = self.unet(latent_model_input, vec_t, encoder_hidden_states=prompt_embeds).sample
+
+ if do_classifier_free_guidance:
+ v_pred_neg, v_pred_text = v_pred.chunk(2)
+ v_pred = v_pred_neg + guidance_scale * (v_pred_text - v_pred_neg)
+
+ if step <= max_steps:
+ latents = self.optimize_latents(latents, v_pred, t,
+ device, optimization_steps, learning_rate, mask, masked_latents, noisy_image)
+
+
+ return latents + (1.0 / len(timesteps)) * v_pred
+
+ def optimize_latents(self, latents, v_pred, t, device, optimization_steps, learning_rate,
+ mask, masked_latents, noisy_image):
+ with torch.enable_grad():
+ latents = torch.autograd.Variable(latents, requires_grad=True)
+ optimizer = torch.optim.Adam([latents], lr=learning_rate)
+
+ for _ in range(optimization_steps):
+ latents_p = latents + t/1000 * v_pred
+ loss = (0.001*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
+
+ loss.backward()
+ optimizer.step()
+ optimizer.zero_grad()
+
+ return latents
+
+ def decode_latents(self, latents):
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
+ return self.image_processor.postprocess(image, output_type="pt")[0]
+
+ def post_process_image(self, latents, output_type):
+ if output_type == "latent":
+ return latents
+
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
+ do_denormalize = [True] * image.shape[0]
+ return self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..77a338c9b8cd6339b4ddc7b394607d5d5414c587
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,9 @@
+spaces
+diffusers==0.31.0
+gradio==5.6.0
+numpy==2.1.3
+Pillow==11.0.0
+torch==2.1.2
+torch_xla==2.5.1
+torchvision==0.16.2
+transformers==4.45.2
diff --git a/saved_results/20241129_210517/input.png b/saved_results/20241129_210517/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..be95fe96bbaa270dd63caf011576ff05074f4184
Binary files /dev/null and b/saved_results/20241129_210517/input.png differ
diff --git a/saved_results/20241129_210517/mask.png b/saved_results/20241129_210517/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..4a3971b3a230521f47464d02c4ff0464fffc0ed4
Binary files /dev/null and b/saved_results/20241129_210517/mask.png differ
diff --git a/saved_results/20241129_210517/output.png b/saved_results/20241129_210517/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..9ac68c047d69567e575717f2041e6cfc1703a4e6
Binary files /dev/null and b/saved_results/20241129_210517/output.png differ
diff --git a/saved_results/20241129_210517/parameters.json b/saved_results/20241129_210517/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..a1336539baf47adff2e803a59ffe19aa319533dd
--- /dev/null
+++ b/saved_results/20241129_210517/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": "a cat",
+ "seed": 0,
+ "randomize_seed": true,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.1,
+ "optimization_steps": 1,
+ "inverseproblem": false
+}
\ No newline at end of file
diff --git a/saved_results/20241129_211124/input.png b/saved_results/20241129_211124/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..bb63c2d883c8f7c23b357c224b8714cf4c00428e
Binary files /dev/null and b/saved_results/20241129_211124/input.png differ
diff --git a/saved_results/20241129_211124/mask.png b/saved_results/20241129_211124/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..c0b3cae14032f922b3823769338a9b3ce0dbd68e
Binary files /dev/null and b/saved_results/20241129_211124/mask.png differ
diff --git a/saved_results/20241129_211124/output.png b/saved_results/20241129_211124/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..bd8a6fc327cbfd4ac3b4425aebfd4a45569b1e9f
Binary files /dev/null and b/saved_results/20241129_211124/output.png differ
diff --git a/saved_results/20241129_211124/parameters.json b/saved_results/20241129_211124/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..34cd68cf297c3783fe7911eaa80dce682fc41e30
--- /dev/null
+++ b/saved_results/20241129_211124/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 0,
+ "randomize_seed": true,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.1,
+ "optimization_steps": 5,
+ "inverseproblem": false
+}
\ No newline at end of file
diff --git a/saved_results/20241129_211142/input.png b/saved_results/20241129_211142/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..bb63c2d883c8f7c23b357c224b8714cf4c00428e
Binary files /dev/null and b/saved_results/20241129_211142/input.png differ
diff --git a/saved_results/20241129_211142/mask.png b/saved_results/20241129_211142/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..c0b3cae14032f922b3823769338a9b3ce0dbd68e
Binary files /dev/null and b/saved_results/20241129_211142/mask.png differ
diff --git a/saved_results/20241129_211142/output.png b/saved_results/20241129_211142/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..c80f5bdae41cb2ce655764d494f7f286f5e17c8c
Binary files /dev/null and b/saved_results/20241129_211142/output.png differ
diff --git a/saved_results/20241129_211142/parameters.json b/saved_results/20241129_211142/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..fb569007fc7bfe8f66c7616512b6568c1e4ab132
--- /dev/null
+++ b/saved_results/20241129_211142/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 0,
+ "randomize_seed": true,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.1,
+ "optimization_steps": 5,
+ "inverseproblem": true
+}
\ No newline at end of file
diff --git a/saved_results/20241129_211621/input.png b/saved_results/20241129_211621/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_211621/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_211621/mask.png b/saved_results/20241129_211621/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..16fd1b0723c8b16a1a04c50937a51f233d5b35ad
Binary files /dev/null and b/saved_results/20241129_211621/mask.png differ
diff --git a/saved_results/20241129_211621/output.png b/saved_results/20241129_211621/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..733712bdfde39d9fb5ed60c56b80610cb400b641
Binary files /dev/null and b/saved_results/20241129_211621/output.png differ
diff --git a/saved_results/20241129_211621/parameters.json b/saved_results/20241129_211621/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..fb569007fc7bfe8f66c7616512b6568c1e4ab132
--- /dev/null
+++ b/saved_results/20241129_211621/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 0,
+ "randomize_seed": true,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.1,
+ "optimization_steps": 5,
+ "inverseproblem": true
+}
\ No newline at end of file
diff --git a/saved_results/20241129_211904/input.png b/saved_results/20241129_211904/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_211904/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_211904/mask.png b/saved_results/20241129_211904/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..a89afefe5da7e69fcec4b23232888867a1cf77dd
Binary files /dev/null and b/saved_results/20241129_211904/mask.png differ
diff --git a/saved_results/20241129_211904/output.png b/saved_results/20241129_211904/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..4de0cfb4ceda9d6fb42a7fb0735c93c66f2abcfe
Binary files /dev/null and b/saved_results/20241129_211904/output.png differ
diff --git a/saved_results/20241129_211904/parameters.json b/saved_results/20241129_211904/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..7056e796e3d79c662df53a618eef507a2381036c
--- /dev/null
+++ b/saved_results/20241129_211904/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 0,
+ "randomize_seed": true,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.02,
+ "optimization_steps": 5,
+ "inverseproblem": true
+}
\ No newline at end of file
diff --git a/saved_results/20241129_212001/input.png b/saved_results/20241129_212001/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_212001/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_212001/mask.png b/saved_results/20241129_212001/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..a89afefe5da7e69fcec4b23232888867a1cf77dd
Binary files /dev/null and b/saved_results/20241129_212001/mask.png differ
diff --git a/saved_results/20241129_212001/output.png b/saved_results/20241129_212001/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..9c06272cc69491ea960b45bceb402d0e7e899257
Binary files /dev/null and b/saved_results/20241129_212001/output.png differ
diff --git a/saved_results/20241129_212001/parameters.json b/saved_results/20241129_212001/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..dd730f6cdbe432700efdbc1db0457b8c7f93e8e4
--- /dev/null
+++ b/saved_results/20241129_212001/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 52,
+ "randomize_seed": false,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.02,
+ "optimization_steps": 10,
+ "inverseproblem": true
+}
\ No newline at end of file
diff --git a/saved_results/20241129_212022/input.png b/saved_results/20241129_212022/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_212022/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_212022/mask.png b/saved_results/20241129_212022/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..a89afefe5da7e69fcec4b23232888867a1cf77dd
Binary files /dev/null and b/saved_results/20241129_212022/mask.png differ
diff --git a/saved_results/20241129_212022/output.png b/saved_results/20241129_212022/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..e484849cdf22ec064a650228820a900449d53819
Binary files /dev/null and b/saved_results/20241129_212022/output.png differ
diff --git a/saved_results/20241129_212022/parameters.json b/saved_results/20241129_212022/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..6795e04282d980f85950ff6334b0f05e1ac7df8a
--- /dev/null
+++ b/saved_results/20241129_212022/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 52,
+ "randomize_seed": false,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.02,
+ "optimization_steps": 10,
+ "inverseproblem": false
+}
\ No newline at end of file
diff --git a/saved_results/20241129_212052/input.png b/saved_results/20241129_212052/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_212052/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_212052/mask.png b/saved_results/20241129_212052/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..920756457cf5bf8db03a3cc24af1fb6570d4cfdf
Binary files /dev/null and b/saved_results/20241129_212052/mask.png differ
diff --git a/saved_results/20241129_212052/output.png b/saved_results/20241129_212052/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..5a953a0078b1c1d613f95cc409c5ee717c06bca0
Binary files /dev/null and b/saved_results/20241129_212052/output.png differ
diff --git a/saved_results/20241129_212052/parameters.json b/saved_results/20241129_212052/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..dd730f6cdbe432700efdbc1db0457b8c7f93e8e4
--- /dev/null
+++ b/saved_results/20241129_212052/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 52,
+ "randomize_seed": false,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.02,
+ "optimization_steps": 10,
+ "inverseproblem": true
+}
\ No newline at end of file
diff --git a/saved_results/20241129_212110/input.png b/saved_results/20241129_212110/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_212110/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_212110/mask.png b/saved_results/20241129_212110/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..920756457cf5bf8db03a3cc24af1fb6570d4cfdf
Binary files /dev/null and b/saved_results/20241129_212110/mask.png differ
diff --git a/saved_results/20241129_212110/output.png b/saved_results/20241129_212110/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..2dbbb38fd44a8e9a6da2f1be7bc13abf6c8eb80c
Binary files /dev/null and b/saved_results/20241129_212110/output.png differ
diff --git a/saved_results/20241129_212110/parameters.json b/saved_results/20241129_212110/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..6795e04282d980f85950ff6334b0f05e1ac7df8a
--- /dev/null
+++ b/saved_results/20241129_212110/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 52,
+ "randomize_seed": false,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.02,
+ "optimization_steps": 10,
+ "inverseproblem": false
+}
\ No newline at end of file
diff --git a/saved_results/20241129_212155/input.png b/saved_results/20241129_212155/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_212155/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_212155/mask.png b/saved_results/20241129_212155/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..c2dabcb0e6b48afad8e54456e177e15b2f847f0e
Binary files /dev/null and b/saved_results/20241129_212155/mask.png differ
diff --git a/saved_results/20241129_212155/output.png b/saved_results/20241129_212155/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..20c6184351a40a9d7ea57da46b09a36bfc29a272
Binary files /dev/null and b/saved_results/20241129_212155/output.png differ
diff --git a/saved_results/20241129_212155/parameters.json b/saved_results/20241129_212155/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..dd730f6cdbe432700efdbc1db0457b8c7f93e8e4
--- /dev/null
+++ b/saved_results/20241129_212155/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 52,
+ "randomize_seed": false,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.02,
+ "optimization_steps": 10,
+ "inverseproblem": true
+}
\ No newline at end of file
diff --git a/saved_results/20241129_212220/input.png b/saved_results/20241129_212220/input.png
new file mode 100644
index 0000000000000000000000000000000000000000..a6e3e6984793a804fbaeaba1a86a5b1c06aca6ab
--- /dev/null
+++ b/saved_results/20241129_212220/input.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
+size 1363292
diff --git a/saved_results/20241129_212220/mask.png b/saved_results/20241129_212220/mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..c2dabcb0e6b48afad8e54456e177e15b2f847f0e
Binary files /dev/null and b/saved_results/20241129_212220/mask.png differ
diff --git a/saved_results/20241129_212220/output.png b/saved_results/20241129_212220/output.png
new file mode 100644
index 0000000000000000000000000000000000000000..a4a25e8497ef08f969f84c1493c9394b3beeea2e
Binary files /dev/null and b/saved_results/20241129_212220/output.png differ
diff --git a/saved_results/20241129_212220/parameters.json b/saved_results/20241129_212220/parameters.json
new file mode 100644
index 0000000000000000000000000000000000000000..6795e04282d980f85950ff6334b0f05e1ac7df8a
--- /dev/null
+++ b/saved_results/20241129_212220/parameters.json
@@ -0,0 +1,10 @@
+{
+ "prompt": " ",
+ "seed": 52,
+ "randomize_seed": false,
+ "num_inference_steps": 200,
+ "max_steps": 200,
+ "learning_rate": 0.02,
+ "optimization_steps": 10,
+ "inverseproblem": false
+}
\ No newline at end of file