Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Taken from ESPNet | |
Adapted by Flux | |
""" | |
import torch | |
from Utility.utils import make_non_pad_mask | |
class StochasticToucanTTSLoss(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.l1_criterion = torch.nn.L1Loss(reduction="none") | |
def forward(self, predicted_features, gold_features, features_lengths): | |
""" | |
Args: | |
predicted_features (Tensor): Batch of outputs (B, Lmax, odim). | |
gold_features (Tensor): Batch of target features (B, Lmax, odim). | |
features_lengths (LongTensor): Batch of the lengths of each target (B,). | |
Returns: | |
Tensor: L1 loss value. | |
""" | |
# calculate loss | |
l1_loss = self.l1_criterion(predicted_features, gold_features) | |
# make weighted mask and apply it | |
out_masks = make_non_pad_mask(features_lengths).unsqueeze(-1).to(gold_features.device) | |
out_masks = torch.nn.functional.pad(out_masks.transpose(1, 2), [0, gold_features.size(1) - out_masks.size(1), 0, 0, 0, 0], value=False).transpose(1, 2) | |
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float() | |
out_weights /= gold_features.size(0) * gold_features.size(2) | |
# apply weight | |
l1_loss = l1_loss.mul(out_weights).masked_select(out_masks).sum() | |
return l1_loss | |