Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as torchfunc | |
from torch.nn import Linear | |
from torch.nn import Sequential | |
from torch.nn import Tanh | |
from Modules.GeneralLayers.Conformer import Conformer | |
from Modules.GeneralLayers.LengthRegulator import LengthRegulator | |
from Modules.ToucanTTS.StochasticToucanTTSLoss import StochasticToucanTTSLoss | |
from Modules.ToucanTTS.flow_matching import CFMDecoder | |
from Preprocessing.articulatory_features import get_feature_to_index_lookup | |
from Utility.utils import initialize | |
from Utility.utils import make_non_pad_mask | |
class ToucanTTS(torch.nn.Module): | |
""" | |
ToucanTTS module, which is based on a FastSpeech 2 module, | |
but with lots of designs from different architectures accumulated | |
and some major components added to put a large focus on | |
multilinguality and controllability. | |
Contributions inspired from elsewhere: | |
- The Decoder is a flow matching network, like in Matcha-TTS and StableTTS | |
- Pitch and energy values are averaged per-phone, as in FastPitch to enable great controllability | |
- The encoder and decoder are Conformers, like in ESPnet | |
""" | |
def __init__(self, | |
# network structure related | |
input_feature_dimensions=64, | |
spec_channels=128, | |
attention_dimension=384, | |
attention_heads=4, | |
positionwise_conv_kernel_size=1, | |
use_scaled_positional_encoding=True, | |
init_type="xavier_uniform", | |
use_macaron_style_in_conformer=True, | |
use_cnn_in_conformer=True, | |
# encoder | |
encoder_layers=6, | |
encoder_units=1536, | |
encoder_normalize_before=True, | |
encoder_concat_after=False, | |
conformer_encoder_kernel_size=7, | |
transformer_enc_dropout_rate=0.1, | |
transformer_enc_positional_dropout_rate=0.1, | |
transformer_enc_attn_dropout_rate=0.1, | |
# decoder | |
decoder_layers=6, | |
decoder_units=1536, | |
decoder_concat_after=False, | |
conformer_decoder_kernel_size=31, # 31 works for spectrograms | |
decoder_normalize_before=True, | |
transformer_dec_dropout_rate=0.1, | |
transformer_dec_positional_dropout_rate=0.1, | |
transformer_dec_attn_dropout_rate=0.1, | |
# duration predictor | |
prosody_channels=8, | |
duration_predictor_layers=3, | |
duration_predictor_kernel_size=5, | |
duration_predictor_dropout_rate=0.2, | |
# pitch predictor | |
pitch_predictor_layers=3, | |
pitch_predictor_kernel_size=5, | |
pitch_predictor_dropout=0.2, | |
pitch_embed_kernel_size=1, | |
pitch_embed_dropout=0.0, | |
# energy predictor | |
energy_predictor_layers=2, | |
energy_predictor_kernel_size=3, | |
energy_predictor_dropout=0.2, | |
energy_embed_kernel_size=1, | |
energy_embed_dropout=0.0, | |
# cfm decoder | |
cfm_filter_channels=256, | |
cfm_heads=4, | |
cfm_layers=3, | |
cfm_kernel_size=5, | |
cfm_p_dropout=0.1, | |
# additional features | |
utt_embed_dim=192, # 192 dim speaker embedding + 16 dim prosody embedding optionally (see older version, this one doesn't use the prosody embedding) | |
lang_embs=8000, | |
lang_emb_size=32, # lower dimensions seem to work better | |
integrate_language_embedding_into_encoder_out=True, | |
embedding_integration="AdaIN", # ["AdaIN" | "ConditionalLayerNorm" | "ConcatProject"] | |
): | |
super().__init__() | |
self.config = { | |
"input_feature_dimensions" : input_feature_dimensions, | |
"attention_dimension" : attention_dimension, | |
"attention_heads" : attention_heads, | |
"positionwise_conv_kernel_size" : positionwise_conv_kernel_size, | |
"use_scaled_positional_encoding" : use_scaled_positional_encoding, | |
"init_type" : init_type, | |
"use_macaron_style_in_conformer" : use_macaron_style_in_conformer, | |
"use_cnn_in_conformer" : use_cnn_in_conformer, | |
"encoder_layers" : encoder_layers, | |
"encoder_units" : encoder_units, | |
"encoder_normalize_before" : encoder_normalize_before, | |
"encoder_concat_after" : encoder_concat_after, | |
"conformer_encoder_kernel_size" : conformer_encoder_kernel_size, | |
"transformer_enc_dropout_rate" : transformer_enc_dropout_rate, | |
"transformer_enc_positional_dropout_rate" : transformer_enc_positional_dropout_rate, | |
"transformer_enc_attn_dropout_rate" : transformer_enc_attn_dropout_rate, | |
"decoder_layers" : decoder_layers, | |
"decoder_units" : decoder_units, | |
"decoder_concat_after" : decoder_concat_after, | |
"conformer_decoder_kernel_size" : conformer_decoder_kernel_size, | |
"decoder_normalize_before" : decoder_normalize_before, | |
"transformer_dec_dropout_rate" : transformer_dec_dropout_rate, | |
"transformer_dec_positional_dropout_rate" : transformer_dec_positional_dropout_rate, | |
"transformer_dec_attn_dropout_rate" : transformer_dec_attn_dropout_rate, | |
"duration_predictor_layers" : duration_predictor_layers, | |
"duration_predictor_kernel_size" : duration_predictor_kernel_size, | |
"duration_predictor_dropout_rate" : duration_predictor_dropout_rate, | |
"pitch_predictor_layers" : pitch_predictor_layers, | |
"pitch_predictor_kernel_size" : pitch_predictor_kernel_size, | |
"pitch_predictor_dropout" : pitch_predictor_dropout, | |
"pitch_embed_kernel_size" : pitch_embed_kernel_size, | |
"pitch_embed_dropout" : pitch_embed_dropout, | |
"energy_predictor_layers" : energy_predictor_layers, | |
"energy_predictor_kernel_size" : energy_predictor_kernel_size, | |
"energy_predictor_dropout" : energy_predictor_dropout, | |
"energy_embed_kernel_size" : energy_embed_kernel_size, | |
"energy_embed_dropout" : energy_embed_dropout, | |
"spec_channels" : spec_channels, | |
"cfm_filter_channels" : cfm_filter_channels, | |
"prosody_channels" : prosody_channels, | |
"cfm_heads" : cfm_heads, | |
"cfm_layers" : cfm_layers, | |
"cfm_kernel_size" : cfm_kernel_size, | |
"cfm_p_dropout" : cfm_p_dropout, | |
"utt_embed_dim" : utt_embed_dim, | |
"lang_embs" : lang_embs, | |
"lang_emb_size" : lang_emb_size, | |
"embedding_integration" : embedding_integration, | |
"integrate_language_embedding_into_encoder_out": integrate_language_embedding_into_encoder_out | |
} | |
if lang_embs is None or lang_embs == 0: | |
lang_embs = None | |
integrate_language_embedding_into_encoder_out = False | |
if integrate_language_embedding_into_encoder_out: | |
utt_embed_dim = utt_embed_dim + lang_emb_size | |
self.input_feature_dimensions = input_feature_dimensions | |
self.attention_dimension = attention_dimension | |
self.use_scaled_pos_enc = use_scaled_positional_encoding | |
self.multilingual_model = lang_embs is not None | |
self.multispeaker_model = utt_embed_dim is not None | |
self.integrate_language_embedding_into_encoder_out = integrate_language_embedding_into_encoder_out | |
self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"] | |
articulatory_feature_embedding = Sequential(Linear(input_feature_dimensions, 100), Tanh(), Linear(100, attention_dimension)) | |
self.encoder = Conformer(conformer_type="encoder", | |
attention_dim=attention_dimension, | |
attention_heads=attention_heads, | |
linear_units=encoder_units, | |
num_blocks=encoder_layers, | |
input_layer=articulatory_feature_embedding, | |
dropout_rate=transformer_enc_dropout_rate, | |
positional_dropout_rate=transformer_enc_positional_dropout_rate, | |
attention_dropout_rate=transformer_enc_attn_dropout_rate, | |
normalize_before=encoder_normalize_before, | |
concat_after=encoder_concat_after, | |
positionwise_conv_kernel_size=positionwise_conv_kernel_size, | |
macaron_style=use_macaron_style_in_conformer, | |
use_cnn_module=True, | |
cnn_module_kernel=conformer_encoder_kernel_size, | |
zero_triu=False, | |
utt_embed=utt_embed_dim, | |
lang_embs=lang_embs, | |
lang_emb_size=lang_emb_size, | |
use_output_norm=True, | |
embedding_integration=embedding_integration) | |
self.pitch_embed = Sequential(torch.nn.Conv1d(in_channels=1, | |
out_channels=attention_dimension, | |
kernel_size=pitch_embed_kernel_size, | |
padding=(pitch_embed_kernel_size - 1) // 2), | |
torch.nn.Dropout(pitch_embed_dropout)) | |
self.energy_embed = Sequential(torch.nn.Conv1d(in_channels=1, out_channels=attention_dimension, kernel_size=energy_embed_kernel_size, | |
padding=(energy_embed_kernel_size - 1) // 2), | |
torch.nn.Dropout(energy_embed_dropout)) | |
self.length_regulator = LengthRegulator() | |
self.decoder = Conformer(conformer_type="decoder", | |
attention_dim=attention_dimension, | |
attention_heads=attention_heads, | |
linear_units=decoder_units, | |
num_blocks=decoder_layers, | |
input_layer=None, | |
dropout_rate=transformer_dec_dropout_rate, | |
positional_dropout_rate=transformer_dec_positional_dropout_rate, | |
attention_dropout_rate=transformer_dec_attn_dropout_rate, | |
normalize_before=decoder_normalize_before, | |
concat_after=decoder_concat_after, | |
positionwise_conv_kernel_size=positionwise_conv_kernel_size, | |
macaron_style=use_macaron_style_in_conformer, | |
use_cnn_module=use_cnn_in_conformer, | |
cnn_module_kernel=conformer_decoder_kernel_size, | |
use_output_norm=embedding_integration not in ["AdaIN", "ConditionalLayerNorm"], | |
utt_embed=utt_embed_dim, | |
embedding_integration=embedding_integration) | |
self.output_projection = torch.nn.Linear(attention_dimension, spec_channels) | |
self.pitch_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels) | |
self.energy_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels) | |
self.duration_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels) | |
# initialize parameters | |
self._reset_parameters(init_type=init_type) | |
if lang_embs is not None: | |
torch.nn.init.normal_(self.encoder.language_embedding.weight, mean=0, std=attention_dimension ** -0.5) | |
# the following modules have their own init function, so they come AFTER the init. | |
self.duration_predictor = CFMDecoder(hidden_channels=prosody_channels, | |
out_channels=1, | |
filter_channels=prosody_channels, | |
n_heads=1, | |
n_layers=duration_predictor_layers, | |
kernel_size=duration_predictor_kernel_size, | |
p_dropout=duration_predictor_dropout_rate, | |
gin_channels=utt_embed_dim) | |
self.pitch_predictor = CFMDecoder(hidden_channels=prosody_channels, | |
out_channels=1, | |
filter_channels=prosody_channels, | |
n_heads=1, | |
n_layers=pitch_predictor_layers, | |
kernel_size=pitch_predictor_kernel_size, | |
p_dropout=pitch_predictor_dropout, | |
gin_channels=utt_embed_dim) | |
self.energy_predictor = CFMDecoder(hidden_channels=prosody_channels, | |
out_channels=1, | |
filter_channels=prosody_channels, | |
n_heads=1, | |
n_layers=energy_predictor_layers, | |
kernel_size=energy_predictor_kernel_size, | |
p_dropout=energy_predictor_dropout, | |
gin_channels=utt_embed_dim) | |
self.flow_matching_decoder = CFMDecoder(hidden_channels=spec_channels, | |
out_channels=spec_channels, | |
filter_channels=cfm_filter_channels, | |
n_heads=cfm_heads, | |
n_layers=cfm_layers, | |
kernel_size=cfm_kernel_size, | |
p_dropout=cfm_p_dropout, | |
gin_channels=utt_embed_dim) | |
self.criterion = StochasticToucanTTSLoss() | |
def forward(self, | |
text_tensors, | |
text_lengths, | |
gold_speech, | |
speech_lengths, | |
gold_durations, | |
gold_pitch, | |
gold_energy, | |
utterance_embedding, | |
return_feats=False, | |
lang_ids=None, | |
run_stochastic=True | |
): | |
""" | |
Args: | |
return_feats (Boolean): whether to return the predicted spectrogram | |
text_tensors (LongTensor): Batch of padded text vectors (B, Tmax). | |
text_lengths (LongTensor): Batch of lengths of each input (B,). | |
gold_speech (Tensor): Batch of padded target features (B, Lmax, odim). | |
speech_lengths (LongTensor): Batch of the lengths of each target (B,). | |
gold_durations (LongTensor): Batch of padded durations (B, Tmax + 1). | |
gold_pitch (Tensor): Batch of padded token-averaged pitch (B, Tmax + 1, 1). | |
gold_energy (Tensor): Batch of padded token-averaged energy (B, Tmax + 1, 1). | |
lang_ids (LongTensor): The language IDs used to access the language embedding table, if the model is multilingual | |
utterance_embedding (Tensor): Batch of embeddings to condition the TTS on, if the model is multispeaker | |
run_stochastic (Bool): Whether to detach the inputs to the normalizing flow for stability. | |
""" | |
outs, \ | |
stochastic_loss, \ | |
duration_loss, \ | |
pitch_loss, \ | |
energy_loss = self._forward(text_tensors=text_tensors, | |
text_lengths=text_lengths, | |
gold_speech=gold_speech, | |
speech_lengths=speech_lengths, | |
gold_durations=gold_durations, | |
gold_pitch=gold_pitch, | |
gold_energy=gold_energy, | |
utterance_embedding=utterance_embedding, | |
is_inference=False, | |
lang_ids=lang_ids, | |
run_stochastic=run_stochastic) | |
# calculate loss | |
regression_loss = self.criterion(predicted_features=outs, | |
gold_features=gold_speech, | |
features_lengths=speech_lengths) | |
if return_feats: | |
return regression_loss, stochastic_loss, duration_loss, pitch_loss, energy_loss, outs | |
return regression_loss, stochastic_loss, duration_loss, pitch_loss, energy_loss | |
def _forward(self, | |
text_tensors, | |
text_lengths, | |
gold_speech=None, | |
speech_lengths=None, | |
gold_durations=None, | |
gold_pitch=None, | |
gold_energy=None, | |
is_inference=False, | |
utterance_embedding=None, | |
lang_ids=None, | |
run_stochastic=False): | |
text_tensors = torch.clamp(text_tensors, max=1.0) | |
# this is necessary, because of the way we represent modifiers to keep them identifiable. | |
if not self.multilingual_model: | |
lang_ids = None | |
if not self.multispeaker_model: | |
utterance_embedding = None | |
if utterance_embedding is not None: | |
utterance_embedding = torch.nn.functional.normalize(utterance_embedding) | |
if self.integrate_language_embedding_into_encoder_out and lang_ids is not None: | |
lang_embs = self.encoder.language_embedding(lang_ids) | |
lang_embs = torch.nn.functional.normalize(lang_embs) | |
utterance_embedding = torch.cat([lang_embs, utterance_embedding], dim=1).detach() | |
# encoding the texts | |
text_masks = make_non_pad_mask(text_lengths, device=text_lengths.device).unsqueeze(-2) | |
encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids) | |
if is_inference: | |
# predicting pitch, energy and durations | |
reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2) | |
pitch_predictions = self.pitch_predictor(mu=reduced_pitch_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding) | |
embedded_pitch_curve = self.pitch_embed(pitch_predictions).transpose(1, 2) | |
reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2) | |
energy_predictions = self.energy_predictor(mu=reduced_energy_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding) | |
embedded_energy_curve = self.energy_embed(energy_predictions).transpose(1, 2) | |
reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2) | |
predicted_durations = self.duration_predictor(mu=reduced_duration_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding) | |
predicted_durations = torch.clamp(torch.ceil(predicted_durations), min=0.0).long().squeeze(1) | |
# modifying the predictions | |
for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)): | |
if phoneme_vector[get_feature_to_index_lookup()["word-boundary"]] == 1: | |
predicted_durations[0][phoneme_index] = 0 | |
# enriching the text with pitch and energy info | |
enriched_encoded_texts = encoded_texts + embedded_pitch_curve + embedded_energy_curve | |
# predicting durations for text and upsampling accordingly | |
upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, predicted_durations) | |
else: | |
# training with teacher forcing | |
reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2) | |
pitch_loss, _ = self.pitch_predictor.compute_loss(mu=reduced_pitch_space, | |
x1=gold_pitch.transpose(1, 2), | |
mask=text_masks.float(), | |
c=utterance_embedding) | |
embedded_pitch_curve = self.pitch_embed(gold_pitch.transpose(1, 2)).transpose(1, 2) | |
reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2) | |
energy_loss, _ = self.energy_predictor.compute_loss(mu=reduced_energy_space, | |
x1=gold_energy.transpose(1, 2), | |
mask=text_masks.float(), | |
c=utterance_embedding) | |
embedded_energy_curve = self.energy_embed(gold_energy.transpose(1, 2)).transpose(1, 2) | |
reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2) | |
duration_loss, _ = self.duration_predictor.compute_loss(mu=reduced_duration_space, | |
x1=gold_durations.unsqueeze(-1).transpose(1, 2).float(), | |
mask=text_masks.float(), | |
c=utterance_embedding) | |
enriched_encoded_texts = encoded_texts + embedded_energy_curve + embedded_pitch_curve | |
upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, gold_durations) | |
# decoding spectrogram | |
decoder_masks = make_non_pad_mask(speech_lengths, device=speech_lengths.device).unsqueeze(-2) if speech_lengths is not None and not is_inference else None | |
decoded_speech, _ = self.decoder(upsampled_enriched_encoded_texts, decoder_masks, utterance_embedding=utterance_embedding) | |
preliminary_spectrogram = self.output_projection(decoded_speech) | |
if is_inference: | |
if run_stochastic: | |
refined_codec_frames = self.flow_matching_decoder(mu=preliminary_spectrogram.transpose(1, 2), | |
mask=make_non_pad_mask([len(decoded_speech[0])], device=decoded_speech.device).unsqueeze(-2).float(), | |
n_timesteps=15, | |
temperature=0.2, | |
c=None).transpose(1, 2) | |
else: | |
refined_codec_frames = preliminary_spectrogram | |
return refined_codec_frames, \ | |
predicted_durations.squeeze(), \ | |
pitch_predictions.squeeze(), \ | |
energy_predictions.squeeze() | |
else: | |
if run_stochastic: | |
stochastic_loss, _ = self.flow_matching_decoder.compute_loss(x1=gold_speech.transpose(1, 2), | |
mask=decoder_masks.float(), | |
mu=preliminary_spectrogram.transpose(1, 2).detach(), | |
c=None) | |
else: | |
stochastic_loss = None | |
return preliminary_spectrogram, \ | |
stochastic_loss, \ | |
duration_loss, \ | |
pitch_loss, \ | |
energy_loss | |
def inference(self, | |
text, | |
speech=None, | |
utterance_embedding=None, | |
return_duration_pitch_energy=False, | |
lang_id=None, | |
run_stochastic=True): | |
""" | |
Args: | |
text (LongTensor): Input sequence of characters (T,). | |
speech (Tensor, optional): Feature sequence to extract style (N, idim). | |
return_duration_pitch_energy (Boolean): whether to return the list of predicted durations for nicer plotting | |
lang_id (LongTensor): The language ID used to access the language embedding table, if the model is multilingual | |
utterance_embedding (Tensor): Embedding to condition the TTS on, if the model is multispeaker | |
run_stochastic (bool): whether to use the output of the stochastic or of the out_projection to generate codec frames | |
""" | |
self.eval() | |
# setup batch axis | |
ilens = torch.tensor([text.shape[0]], dtype=torch.long, device=text.device) | |
text_pseudobatched, speech_pseudobatched = text.unsqueeze(0), None | |
if speech is not None: | |
speech_pseudobatched = speech.unsqueeze(0) | |
utterance_embeddings = utterance_embedding.unsqueeze(0) if utterance_embedding is not None else None | |
outs, \ | |
duration_predictions, \ | |
pitch_predictions, \ | |
energy_predictions = self._forward(text_pseudobatched, | |
ilens, | |
speech_pseudobatched, | |
is_inference=True, | |
utterance_embedding=utterance_embeddings, | |
lang_ids=lang_id, | |
run_stochastic=run_stochastic) # (1, L, odim) | |
self.train() | |
if return_duration_pitch_energy: | |
return outs.squeeze().transpose(0, 1), duration_predictions, pitch_predictions, energy_predictions | |
return outs.squeeze().transpose(0, 1) | |
def _reset_parameters(self, init_type="xavier_uniform"): | |
# initialize parameters | |
if init_type != "pytorch": | |
initialize(self, init_type) | |
def reset_postnet(self, init_type="xavier_uniform"): | |
# useful for after they explode | |
initialize(self.flow_matching_decoder, init_type) | |
if __name__ == '__main__': | |
model = ToucanTTS() | |
print(sum(p.numel() for p in model.parameters() if p.requires_grad)) | |
print(" TESTING TRAINING ") | |
dummy_text_batch = torch.randint(low=0, high=2, size=[3, 3, 64]).float() # [Batch, Sequence Length, Features per Phone] | |
dummy_text_lens = torch.LongTensor([2, 3, 3]) | |
dummy_speech_batch = torch.randn([3, 30, 128]) # [Batch, Sequence Length, Spectrogram Buckets] | |
dummy_speech_lens = torch.LongTensor([10, 30, 20]) | |
dummy_durations = torch.LongTensor([[10, 0, 0], [10, 15, 5], [5, 5, 10]]) | |
dummy_pitch = torch.Tensor([[[1.0], [0.], [0.]], [[1.1], [1.2], [0.8]], [[1.1], [1.2], [0.8]]]) | |
dummy_energy = torch.Tensor([[[1.0], [1.3], [0.]], [[1.1], [1.4], [0.8]], [[1.1], [1.2], [0.8]]]) | |
dummy_utterance_embed = torch.randn([3, 192]) # [Batch, Dimensions of Speaker Embedding] | |
dummy_language_id = torch.LongTensor([5, 3, 2]) | |
ce, fl, dl, pl, el = model(dummy_text_batch, | |
dummy_text_lens, | |
dummy_speech_batch, | |
dummy_speech_lens, | |
dummy_durations, | |
dummy_pitch, | |
dummy_energy, | |
utterance_embedding=dummy_utterance_embed, | |
lang_ids=dummy_language_id) | |
loss = ce + dl + pl + el + fl | |
print(loss) | |
loss.backward() | |
print(" TESTING INFERENCE ") | |
dummy_text_batch = torch.randint(low=0, high=2, size=[12, 64]).float() # [Sequence Length, Features per Phone] | |
dummy_utterance_embed = torch.randn([192]) # [Dimensions of Speaker Embedding] | |
dummy_language_id = torch.LongTensor([2]) | |
print(model.inference(dummy_text_batch, | |
utterance_embedding=dummy_utterance_embed, | |
lang_id=dummy_language_id).shape) | |