EnglishToucan / Modules /ToucanTTS /flow_matching.py
Flux9665's picture
update to current version
6a79837
"""
Copied from https://github.com/KdaiP/StableTTS by https://github.com/KdaiP
https://github.com/KdaiP/StableTTS/blob/eebb177ebf195fd1246dedabec4ef69d9351a4f8/models/flow_matching.py
Code is under MIT License
"""
import imageio
import torch
import torch.nn.functional as F
from Modules.ToucanTTS.dit_wrapper import Decoder
from Utility.utils import plot_spec_tensor
# copied from https://github.com/jaywalnut310/vits/blob/main/commons.py#L121
def sequence_mask(length: torch.Tensor, max_length: int = None) -> torch.Tensor:
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
# modified from https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/flow_matching.py
class CFMDecoder(torch.nn.Module):
def __init__(self, hidden_channels, out_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, gin_channels):
super().__init__()
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.gin_channels = gin_channels
self.sigma_min = 1e-4
self.estimator = Decoder(hidden_channels, out_channels, filter_channels, p_dropout, n_layers, n_heads, kernel_size, gin_channels)
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, c=None):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
c (torch.Tensor, optional): shape: (batch_size, gin_channels)
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
size = list(mu.size())
size[1] = self.out_channels
z = torch.randn(size=size).to(mu.device) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, c=c)
def solve_euler(self, x, t_span, mu, mask, c, plot_solutions=False):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
c (torch.Tensor, optional): speaker condition.
shape: (batch_size, gin_channels)
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
sol = []
for step in range(1, len(t_span)):
dphi_dt = self.estimator(x, mask, mu, t, c)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
if plot_solutions:
create_plot_of_all_solutions(sol)
return sol[-1]
def compute_loss(self, x1, mask, mu, c):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
c (torch.Tensor, optional): speaker condition.
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
b, _, t = mu.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), c),
u,
reduction="sum") / (torch.sum(mask) * u.shape[1])
return loss, y
def create_plot_of_all_solutions(sol):
gif_collector = list()
for step_index, solution in enumerate(sol):
unbatched_solution = solution[0] # remove the batch axis (if there are more than one element in the batch, we only take the first)
plot_spec_tensor(unbatched_solution, "tmp", step_index, title=step_index + 1)
gif_collector.append(imageio.v2.imread(f"tmp/{step_index}.png"))
for _ in range(10):
gif_collector.append(gif_collector[-1])
imageio.mimsave("tmp/animation.gif", gif_collector, fps=6, loop=0)