Spaces:
Running
on
Zero
Running
on
Zero
""" | |
MIT License | |
Copyright (c) 2022 Yi Ren | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
import torch | |
from torch import nn | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
class WN(torch.nn.Module): | |
def __init__(self, hidden_size, kernel_size, dilation_rate, n_layers, c_cond=0, | |
p_dropout=0, share_cond_layers=False, is_BTC=False, use_weightnorm=True): | |
super(WN, self).__init__() | |
assert (kernel_size % 2 == 1) | |
assert (hidden_size % 2 == 0) | |
self.is_BTC = is_BTC | |
self.hidden_size = hidden_size | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = c_cond | |
self.p_dropout = p_dropout | |
self.share_cond_layers = share_cond_layers | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
self.drop = nn.Dropout(p_dropout) | |
if c_cond != 0 and not share_cond_layers: | |
cond_layer = torch.nn.Conv1d(c_cond, 2 * hidden_size * n_layers, 1) | |
if use_weightnorm: | |
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') | |
else: | |
self.cond_layer = cond_layer | |
for i in range(n_layers): | |
dilation = dilation_rate ** i | |
padding = int((kernel_size * dilation - dilation) / 2) | |
in_layer = torch.nn.Conv1d(hidden_size, 2 * hidden_size, kernel_size, | |
dilation=dilation, padding=padding) | |
if use_weightnorm: | |
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') | |
self.in_layers.append(in_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2 * hidden_size | |
else: | |
res_skip_channels = hidden_size | |
res_skip_layer = torch.nn.Conv1d(hidden_size, res_skip_channels, 1) | |
if use_weightnorm: | |
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, x, nonpadding=None, cond=None): | |
if self.is_BTC: | |
x = x.transpose(1, 2) | |
cond = cond.transpose(1, 2) if cond is not None else None | |
nonpadding = nonpadding.transpose(1, 2) if nonpadding is not None else None | |
if nonpadding is None: | |
nonpadding = 1 | |
output = torch.zeros_like(x) | |
n_channels_tensor = torch.IntTensor([self.hidden_size]) | |
if cond is not None and not self.share_cond_layers: | |
cond = self.cond_layer(cond) | |
for i in range(self.n_layers): | |
x_in = self.in_layers[i](x) | |
x_in = self.drop(x_in) | |
if cond is not None: | |
cond_offset = i * 2 * self.hidden_size | |
cond_l = cond[:, cond_offset:cond_offset + 2 * self.hidden_size, :] | |
else: | |
cond_l = torch.zeros_like(x_in) | |
acts = fused_add_tanh_sigmoid_multiply(x_in, cond_l, n_channels_tensor) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
x = (x + res_skip_acts[:, :self.hidden_size, :]) * nonpadding | |
output = output + res_skip_acts[:, self.hidden_size:, :] | |
else: | |
output = output + res_skip_acts | |
output = output * nonpadding | |
if self.is_BTC: | |
output = output.transpose(1, 2) | |
return output | |
def remove_weight_norm(self): | |
def remove_weight_norm(m): | |
try: | |
nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(remove_weight_norm) | |