EnglishToucan / Utility /diverse_losses.py
Flux9665's picture
initial commit
6faeba1
# adapted from https://github.com/facebookresearch/barlowtwins
from math import exp
import torch
import torch.nn.functional as F
from torch.autograd import Variable
class RedundancyReduction(torch.nn.Module):
def __init__(self, lambd=1e-5, vector_dimensions=256):
super().__init__()
self.lambd = lambd
self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False)
def forward(self, z1, z2):
c = self.bn(z1).T @ self.bn(z2)
c.div_(z1.size(0))
off_diag = off_diagonal(c).pow_(2).sum()
return self.lambd * off_diag
class BarlowTwinsLoss(torch.nn.Module):
def __init__(self, lambd=1e-5, vector_dimensions=256):
super().__init__()
self.lambd = lambd
self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False)
def forward(self, z1, z2):
c = self.bn(z1).T @ self.bn(z2)
c.div_(z1.size(0))
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + self.lambd * off_diag
return loss
def off_diagonal(x):
# return a flattened view of the off-diagonal elements of a square matrix
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
class TripletLoss(torch.nn.Module):
def __init__(self, margin):
super().__init__()
self.cosine_similarity = torch.nn.CosineSimilarity()
self.margin = margin
def forward(self,
anchor_embeddings,
positive_embeddings,
negative_embeddings):
positive_distance = 1 - self.cosine_similarity(anchor_embeddings, positive_embeddings)
negative_distance = 1 - self.cosine_similarity(anchor_embeddings, negative_embeddings)
losses = torch.max(positive_distance - negative_distance + self.margin,
torch.full_like(positive_distance, 0))
return torch.mean(losses)
# The following is taken from https://github.com/NATSpeech/NATSpeech/blob/aef3aa8899c82e40a28e4f59d559b46b18ba87e8/utils/metrics/ssim.py
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1)
class SSIM(torch.nn.Module):
"""
Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim
"""
def __init__(self, window_size=11, size_average=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
window = None
def ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.size()
global window
if window is None:
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)