import os import torch from InferenceInterfaces.ToucanTTSInterface import ToucanTTSInterface from Modules.ControllabilityGAN.GAN import GanWrapper from Utility.storage_config import MODELS_DIR class ControllableInterface: def __init__(self, gpu_id="cpu", available_artificial_voices=1000): if gpu_id == "cpu": os.environ["CUDA_VISIBLE_DEVICES"] = "" else: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu_id}" self.device = "cuda" if gpu_id != "cpu" else "cpu" self.model = ToucanTTSInterface(device=self.device, tts_model_path="Meta") self.wgan = GanWrapper(os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"), device=self.device) self.generated_speaker_embeds = list() self.available_artificial_voices = available_artificial_voices self.current_language = "" self.current_accent = "" def read(self, prompt, reference_audio, voice_seed, prosody_creativity, duration_scaling_factor, pause_duration_scaling_factor, pitch_variance_scale, energy_variance_scale, emb_slider_1, emb_slider_2, emb_slider_3, emb_slider_4, emb_slider_5, emb_slider_6, loudness_in_db ): if reference_audio is None: self.wgan.set_latent(voice_seed) controllability_vector = torch.tensor([emb_slider_1, emb_slider_2, emb_slider_3, emb_slider_4, emb_slider_5, emb_slider_6], dtype=torch.float32) embedding = self.wgan.modify_embed(controllability_vector) self.model.set_utterance_embedding(embedding=embedding) else: self.model.set_utterance_embedding(reference_audio) phones = self.model.text2phone.get_phone_string(prompt) if len(phones) > 1800: prompt = "Your input was too long. Please try either a shorter text or split it into several parts." print(prompt + "\n\n") wav, sr, fig = self.model(prompt, input_is_phones=False, duration_scaling_factor=duration_scaling_factor, pitch_variance_scale=pitch_variance_scale, energy_variance_scale=energy_variance_scale, pause_duration_scaling_factor=pause_duration_scaling_factor, return_plot_as_filepath=True, prosody_creativity=prosody_creativity, loudness_in_db=loudness_in_db) return sr, wav, fig