import gradio as gr import torch.cuda from InferenceInterfaces.ControllableInterface import ControllableInterface from Utility.utils import float2pcm from Utility.utils import load_json_from_path class TTSWebUI: def __init__(self, gpu_id="cpu", title="Stochastic Speech Synthesis with ToucanTTS", article="For a multilingual version, have a look at https://huggingface.co/spaces/Flux9665/MassivelyMultilingualTTS", available_artificial_voices=1000, path_to_iso_list="Preprocessing/multilinguality/iso_to_fullname.json"): # iso_to_name = load_json_from_path(path_to_iso_list) # accent_selection = [f"{iso_to_name[iso_code]} Accent ({iso_code})" for iso_code in iso_to_name] self.controllable_ui = ControllableInterface(gpu_id=gpu_id, available_artificial_voices=available_artificial_voices) self.iface = gr.Interface(fn=self.read, inputs=[gr.Textbox(lines=2, placeholder="write what you want the synthesis to read here...", value="What I cannot create, I do not understand.", label="Text input"), gr.Audio(type="filepath", show_label=True, container=True, label="Voice to Clone (if left empty, will use an artificial voice instead)"), gr.Slider(minimum=0, maximum=available_artificial_voices, step=1, value=279, label="Random Seed for the artificial Voice"), gr.Slider(minimum=0.0, maximum=0.8, step=0.1, value=0.1, label="Prosody Creativity"), gr.Slider(minimum=0.7, maximum=1.3, step=0.1, value=1.0, label="Duration Scale"), # gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"), # gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"), gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Femininity / Masculinity"), gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth") ], outputs=[gr.Audio(type="numpy", label="Speech"), gr.Image(label="Visualization")], title=title, theme="default", allow_flagging="never", article=article) self.iface.launch() def read(self, prompt, reference_audio, voice_seed, prosody_creativity, duration_scaling_factor, # pitch_variance_scale, # energy_variance_scale, emb1, emb2 ): sr, wav, fig = self.controllable_ui.read(prompt, reference_audio, voice_seed, prosody_creativity, duration_scaling_factor, 1., 1.0, 1.0, emb1, emb2, 0., 0., 0., 0., -20.) return (sr, float2pcm(wav)), fig if __name__ == '__main__': TTSWebUI(gpu_id="cuda" if torch.cuda.is_available() else "cpu")