import dotwiz import torch import torch.nn.functional as torchfunc from torch.nn import Linear from torch.nn import Sequential from torch.nn import Tanh from Modules.GeneralLayers.Conformer import Conformer from Modules.GeneralLayers.LengthRegulator import LengthRegulator from Modules.ToucanTTS.flow_matching import CFMDecoder from Preprocessing.articulatory_features import get_feature_to_index_lookup from Utility.utils import make_non_pad_mask class ToucanTTS(torch.nn.Module): def __init__(self, weights, config): super().__init__() self.config = config config = dotwiz.DotWiz(config) input_feature_dimensions = config.input_feature_dimensions attention_dimension = config.attention_dimension attention_heads = config.attention_heads positionwise_conv_kernel_size = config.positionwise_conv_kernel_size use_scaled_positional_encoding = config.use_scaled_positional_encoding use_macaron_style_in_conformer = config.use_macaron_style_in_conformer use_cnn_in_conformer = config.use_cnn_in_conformer encoder_layers = config.encoder_layers encoder_units = config.encoder_units encoder_normalize_before = config.encoder_normalize_before encoder_concat_after = config.encoder_concat_after conformer_encoder_kernel_size = config.conformer_encoder_kernel_size transformer_enc_dropout_rate = config.transformer_enc_dropout_rate transformer_enc_positional_dropout_rate = config.transformer_enc_positional_dropout_rate transformer_enc_attn_dropout_rate = config.transformer_enc_attn_dropout_rate decoder_layers = config.decoder_layers decoder_units = config.decoder_units decoder_concat_after = config.decoder_concat_after conformer_decoder_kernel_size = config.conformer_decoder_kernel_size decoder_normalize_before = config.decoder_normalize_before transformer_dec_dropout_rate = config.transformer_dec_dropout_rate transformer_dec_positional_dropout_rate = config.transformer_dec_positional_dropout_rate transformer_dec_attn_dropout_rate = config.transformer_dec_attn_dropout_rate duration_predictor_layers = config.duration_predictor_layers duration_predictor_kernel_size = config.duration_predictor_kernel_size duration_predictor_dropout_rate = config.duration_predictor_dropout_rate pitch_predictor_layers = config.pitch_predictor_layers pitch_predictor_kernel_size = config.pitch_predictor_kernel_size pitch_predictor_dropout = config.pitch_predictor_dropout pitch_embed_kernel_size = config.pitch_embed_kernel_size pitch_embed_dropout = config.pitch_embed_dropout energy_predictor_layers = config.energy_predictor_layers energy_predictor_kernel_size = config.energy_predictor_kernel_size energy_predictor_dropout = config.energy_predictor_dropout energy_embed_kernel_size = config.energy_embed_kernel_size energy_embed_dropout = config.energy_embed_dropout cfm_filter_channels = config.cfm_filter_channels cfm_heads = config.cfm_heads cfm_layers = config.cfm_layers cfm_kernel_size = config.cfm_kernel_size cfm_p_dropout = config.cfm_p_dropout utt_embed_dim = config.utt_embed_dim lang_embs = config.lang_embs spec_channels = config.spec_channels embedding_integration = config.embedding_integration lang_emb_size = config.lang_emb_size integrate_language_embedding_into_encoder_out = config.integrate_language_embedding_into_encoder_out prosody_channels = config.prosody_channels if lang_embs is None or lang_embs == 0: lang_embs = None integrate_language_embedding_into_encoder_out = False if integrate_language_embedding_into_encoder_out: utt_embed_dim = utt_embed_dim + lang_emb_size self.input_feature_dimensions = input_feature_dimensions self.attention_dimension = attention_dimension self.use_scaled_pos_enc = use_scaled_positional_encoding self.multilingual_model = lang_embs is not None self.multispeaker_model = utt_embed_dim is not None self.integrate_language_embedding_into_encoder_out = integrate_language_embedding_into_encoder_out self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"] articulatory_feature_embedding = Sequential(Linear(input_feature_dimensions, 100), Tanh(), Linear(100, attention_dimension)) self.encoder = Conformer(conformer_type="encoder", attention_dim=attention_dimension, attention_heads=attention_heads, linear_units=encoder_units, num_blocks=encoder_layers, input_layer=articulatory_feature_embedding, dropout_rate=transformer_enc_dropout_rate, positional_dropout_rate=transformer_enc_positional_dropout_rate, attention_dropout_rate=transformer_enc_attn_dropout_rate, normalize_before=encoder_normalize_before, concat_after=encoder_concat_after, positionwise_conv_kernel_size=positionwise_conv_kernel_size, macaron_style=use_macaron_style_in_conformer, use_cnn_module=True, cnn_module_kernel=conformer_encoder_kernel_size, zero_triu=False, utt_embed=utt_embed_dim, lang_embs=lang_embs, lang_emb_size=lang_emb_size, use_output_norm=True, embedding_integration=embedding_integration) self.duration_predictor = CFMDecoder(hidden_channels=prosody_channels, out_channels=1, filter_channels=prosody_channels, n_heads=1, n_layers=duration_predictor_layers, kernel_size=duration_predictor_kernel_size, p_dropout=duration_predictor_dropout_rate, gin_channels=utt_embed_dim) self.pitch_predictor = CFMDecoder(hidden_channels=prosody_channels, out_channels=1, filter_channels=prosody_channels, n_heads=1, n_layers=pitch_predictor_layers, kernel_size=pitch_predictor_kernel_size, p_dropout=pitch_predictor_dropout, gin_channels=utt_embed_dim) self.energy_predictor = CFMDecoder(hidden_channels=prosody_channels, out_channels=1, filter_channels=prosody_channels, n_heads=1, n_layers=energy_predictor_layers, kernel_size=energy_predictor_kernel_size, p_dropout=energy_predictor_dropout, gin_channels=utt_embed_dim) self.pitch_embed = Sequential(torch.nn.Conv1d(in_channels=1, out_channels=attention_dimension, kernel_size=pitch_embed_kernel_size, padding=(pitch_embed_kernel_size - 1) // 2), torch.nn.Dropout(pitch_embed_dropout)) self.energy_embed = Sequential(torch.nn.Conv1d(in_channels=1, out_channels=attention_dimension, kernel_size=energy_embed_kernel_size, padding=(energy_embed_kernel_size - 1) // 2), torch.nn.Dropout(energy_embed_dropout)) self.length_regulator = LengthRegulator() self.decoder = Conformer(conformer_type="decoder", attention_dim=attention_dimension, attention_heads=attention_heads, linear_units=decoder_units, num_blocks=decoder_layers, input_layer=None, dropout_rate=transformer_dec_dropout_rate, positional_dropout_rate=transformer_dec_positional_dropout_rate, attention_dropout_rate=transformer_dec_attn_dropout_rate, normalize_before=decoder_normalize_before, concat_after=decoder_concat_after, positionwise_conv_kernel_size=positionwise_conv_kernel_size, macaron_style=use_macaron_style_in_conformer, use_cnn_module=use_cnn_in_conformer, cnn_module_kernel=conformer_decoder_kernel_size, use_output_norm=not embedding_integration in ["AdaIN", "ConditionalLayerNorm"], utt_embed=utt_embed_dim, embedding_integration=embedding_integration) self.output_projection = torch.nn.Linear(attention_dimension, spec_channels) self.pitch_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels) self.energy_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels) self.duration_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels) self.flow_matching_decoder = CFMDecoder(hidden_channels=spec_channels, out_channels=spec_channels, filter_channels=cfm_filter_channels, n_heads=cfm_heads, n_layers=cfm_layers, kernel_size=cfm_kernel_size, p_dropout=cfm_p_dropout, gin_channels=utt_embed_dim) self.load_state_dict(weights) self.eval() def _forward(self, text_tensors, text_lengths, gold_durations=None, gold_pitch=None, gold_energy=None, duration_scaling_factor=1.0, utterance_embedding=None, lang_ids=None, pitch_variance_scale=1.0, energy_variance_scale=1.0, pause_duration_scaling_factor=1.0, prosody_creativity=0.1): text_tensors = torch.clamp(text_tensors, max=1.0) # this is necessary, because of the way we represent modifiers to keep them identifiable. if not self.multilingual_model: lang_ids = None if not self.multispeaker_model: utterance_embedding = None if utterance_embedding is not None: utterance_embedding = torch.nn.functional.normalize(utterance_embedding) if self.integrate_language_embedding_into_encoder_out and lang_ids is not None: lang_embs = self.encoder.language_embedding(lang_ids) lang_embs = torch.nn.functional.normalize(lang_embs) utterance_embedding = torch.cat([lang_embs, utterance_embedding], dim=1).detach() # encoding the texts text_masks = make_non_pad_mask(text_lengths, device=text_lengths.device).unsqueeze(-2) print(text_tensors) print(text_masks) encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids) # predicting pitch, energy and durations reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2) pitch_predictions = self.pitch_predictor(mu=reduced_pitch_space, mask=text_masks.float(), n_timesteps=10, temperature=prosody_creativity, c=utterance_embedding) if gold_pitch is None else gold_pitch pitch_predictions = _scale_variance(pitch_predictions, pitch_variance_scale) embedded_pitch_curve = self.pitch_embed(pitch_predictions).transpose(1, 2) reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2) energy_predictions = self.energy_predictor(mu=reduced_energy_space, mask=text_masks.float(), n_timesteps=10, temperature=prosody_creativity, c=utterance_embedding) if gold_energy is None else gold_energy energy_predictions = _scale_variance(energy_predictions, energy_variance_scale) embedded_energy_curve = self.energy_embed(energy_predictions).transpose(1, 2) reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2) predicted_durations = torch.clamp(torch.ceil(self.duration_predictor(mu=reduced_duration_space, mask=text_masks.float(), n_timesteps=10, temperature=prosody_creativity, c=utterance_embedding)), min=0.0).long().squeeze(1) if gold_durations is None else gold_durations # modifying the predictions with control parameters for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)): if phoneme_vector[get_feature_to_index_lookup()["word-boundary"]] == 1: predicted_durations[0][phoneme_index] = 0 if phoneme_vector[get_feature_to_index_lookup()["silence"]] == 1 and pause_duration_scaling_factor != 1.0: predicted_durations[0][phoneme_index] = torch.round(predicted_durations[0][phoneme_index].float() * pause_duration_scaling_factor).long() if duration_scaling_factor != 1.0: assert duration_scaling_factor > 0.0 predicted_durations = torch.round(predicted_durations.float() * duration_scaling_factor).long() # enriching the text with pitch and energy info enriched_encoded_texts = encoded_texts + embedded_pitch_curve + embedded_energy_curve # predicting durations for text and upsampling accordingly upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, predicted_durations) # decoding spectrogram decoded_speech, _ = self.decoder(upsampled_enriched_encoded_texts, None, utterance_embedding=utterance_embedding) preliminary_spectrogram = self.output_projection(decoded_speech) refined_codec_frames = self.flow_matching_decoder(mu=preliminary_spectrogram.transpose(1, 2), mask=make_non_pad_mask([len(decoded_speech[0])], device=decoded_speech.device).unsqueeze(-2), n_timesteps=15, temperature=0.1, # low temperature, so the model follows the specified prosody curves better. c=None).transpose(1, 2) return refined_codec_frames, predicted_durations.squeeze(), pitch_predictions.squeeze(), energy_predictions.squeeze() @torch.inference_mode() def forward(self, text, durations=None, pitch=None, energy=None, utterance_embedding=None, return_duration_pitch_energy=False, lang_id=None, duration_scaling_factor=1.0, pitch_variance_scale=1.0, energy_variance_scale=1.0, pause_duration_scaling_factor=1.0, prosody_creativity=0.1): """ Generate the sequence of spectrogram frames given the sequence of vectorized phonemes. Args: text: input sequence of vectorized phonemes durations: durations to be used (optional, if not provided, they will be predicted) pitch: token-averaged pitch curve to be used (optional, if not provided, it will be predicted) energy: token-averaged energy curve to be used (optional, if not provided, it will be predicted) return_duration_pitch_energy: whether to return the list of predicted durations for nicer plotting utterance_embedding: embedding of speaker information lang_id: id to be fed into the embedding layer that contains language information duration_scaling_factor: reasonable values are 0.8 < scale < 1.2. 1.0 means no scaling happens, higher values increase durations for the whole utterance, lower values decrease durations for the whole utterance. pitch_variance_scale: reasonable values are 0.6 < scale < 1.4. 1.0 means no scaling happens, higher values increase variance of the pitch curve, lower values decrease variance of the pitch curve. energy_variance_scale: reasonable values are 0.6 < scale < 1.4. 1.0 means no scaling happens, higher values increase variance of the energy curve, lower values decrease variance of the energy curve. pause_duration_scaling_factor: reasonable values are 0.6 < scale < 1.4. scales the durations of pauses on top of the regular duration scaling Returns: features spectrogram """ # setup batch axis text_length = torch.tensor([text.shape[0]], dtype=torch.long, device=text.device) if durations is not None: durations = durations.unsqueeze(0).to(text.device) if pitch is not None: pitch = pitch.unsqueeze(0).to(text.device) if energy is not None: energy = energy.unsqueeze(0).to(text.device) if lang_id is not None: lang_id = lang_id.to(text.device) outs, \ predicted_durations, \ pitch_predictions, \ energy_predictions = self._forward(text.unsqueeze(0), text_length, gold_durations=durations, gold_pitch=pitch, gold_energy=energy, utterance_embedding=utterance_embedding.unsqueeze(0) if utterance_embedding is not None else None, lang_ids=lang_id, duration_scaling_factor=duration_scaling_factor, pitch_variance_scale=pitch_variance_scale, energy_variance_scale=energy_variance_scale, pause_duration_scaling_factor=pause_duration_scaling_factor, prosody_creativity=prosody_creativity) if return_duration_pitch_energy: return outs.squeeze().transpose(0, 1), predicted_durations, pitch_predictions, energy_predictions return outs.squeeze().transpose(0, 1) def store_inverse_all(self): def remove_weight_norm(m): try: torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return # self.post_flow.store_inverse() # we're no longer using glow, so this is deprecated self.apply(remove_weight_norm) def _scale_variance(sequence, scale): if scale == 1.0: return sequence average = sequence[0][sequence[0] != 0.0].mean() sequence = sequence - average # center sequence around 0 sequence = sequence * scale # scale the variance sequence = sequence + average # move center back to original with changed variance for sequence_index in range(len(sequence[0][0])): if sequence[0][0][sequence_index] < 0.0: sequence[0][0][sequence_index] = 0.0 return sequence def smooth_time_series(matrix, n_neighbors): """ Smooth a 2D matrix along the time axis using a moving average. Parameters: - matrix (torch.Tensor): Input matrix (2D tensor) representing the time series. - n_neighbors (int): Number of neighboring rows to include in the moving average. Returns: - torch.Tensor: Smoothed matrix. """ smoothed_matrix = torch.zeros_like(matrix) for i in range(matrix.size(0)): lower = max(0, i - n_neighbors) upper = min(matrix.size(0), i + n_neighbors + 1) smoothed_matrix[i] = torch.mean(matrix[lower:upper], dim=0) return smoothed_matrix def make_near_zero_to_zero(sequence): for index in range(len(sequence)): if sequence[index] < 0.2: sequence[index] = 0.0 return sequence