import os.path import torch from Preprocessing.multilinguality.create_distance_lookups import CacheCreator from Utility.utils import load_json_from_path class LanguageEmbeddingSpaceStructureLoss(torch.nn.Module): def __init__(self): super().__init__() cc = CacheCreator(cache_root="Preprocessing/multilinguality") if not os.path.exists('Preprocessing/multilinguality/lang_1_to_lang_2_to_tree_dist.json'): cc.create_tree_cache(cache_root="Preprocessing/multilinguality") if not os.path.exists('Preprocessing/multilinguality/lang_1_to_lang_2_to_tree_dist.json'): cc.create_map_cache(cache_root="Preprocessing/multilinguality") self.tree_dist = load_json_from_path('Preprocessing/multilinguality/lang_1_to_lang_2_to_tree_dist.json') self.map_dist = load_json_from_path('Preprocessing/multilinguality/lang_1_to_lang_2_to_map_dist.json') # with open("Preprocessing/multilinguality/asp_dict.pkl", 'rb') as dictfile: # self.asp_sim = pickle.load(dictfile) # self.lang_list = list(self.asp_sim.keys()) # list of all languages, to get lang_b's index self.largest_value_map_dist = 0.0 for _, values in self.map_dist.items(): for _, value in values.items(): self.largest_value_map_dist = max(self.largest_value_map_dist, value) self.iso_codes_to_ids = load_json_from_path("Preprocessing/multilinguality/iso_lookup.json")[-1] self.ids_to_iso_codes = {v: k for k, v in self.iso_codes_to_ids.items()} def forward(self, language_ids, language_embeddings): """ Args: language_ids (Tensor): IDs of languages in the same order as the embeddings to calculate the distances according to the metrics. language_embeddings (Tensor): Batch of language embeddings, of which the distances will be compared to the distances according to the metrics. Returns: Tensor: Language Embedding Structure Loss Value """ losses = list() for language_id_1, language_embedding_1 in zip(language_ids, language_embeddings): for language_id_2, language_embedding_2 in zip(language_ids, language_embeddings): if language_id_1 != language_id_2: embed_dist = torch.nn.functional.l1_loss(language_embedding_1, language_embedding_2) lang_1 = self.ids_to_iso_codes[language_id_1] lang_2 = self.ids_to_iso_codes[language_id_2] # Value Range Normalized Tree Dist try: tree_dist = self.tree_dist[lang_1][lang_2] except KeyError: tree_dist = self.tree_dist[lang_2][lang_1] # Value Range Normalized Map Dist try: map_dist = self.map_dist[lang_1][lang_2] / self.largest_value_map_dist except KeyError: map_dist = self.map_dist[lang_2][lang_1] / self.largest_value_map_dist # Value Range Normalized ASP Dist # lang_2_idx = self.lang_list.index(lang_2) # asp_dist = 1.0 - self.asp_sim[lang_1][lang_2_idx] # it's a similarity measure that goes from 0 to 1, so we subtract it from 1 to turn it into a distance # Average distance should be similar to embedding distance to bring some structure into the embedding-space # metric_distance = (torch.tensor(tree_dist) + torch.tensor(map_dist) + torch.tensor(asp_dist)) / 3 metric_distance = (torch.tensor(tree_dist) + torch.tensor(map_dist)) / 2 losses.append(torch.nn.functional.l1_loss(embed_dist, metric_distance)) return sum(losses) / len(losses)