Spaces:
Runtime error
Runtime error
File size: 7,074 Bytes
cea6632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
"""
Taken from ESPNet
"""
import torch
import torch.nn.functional as F
from Layers.Attention import RelPositionMultiHeadedAttention
from Layers.Convolution import ConvolutionModule
from Layers.EncoderLayer import EncoderLayer
from Layers.LayerNorm import LayerNorm
from Layers.MultiLayeredConv1d import MultiLayeredConv1d
from Layers.MultiSequential import repeat
from Layers.PositionalEncoding import RelPositionalEncoding
from Layers.Swish import Swish
class Conformer(torch.nn.Module):
"""
Conformer encoder module.
Args:
idim (int): Input dimension.
attention_dim (int): Dimension of attention.
attention_heads (int): The number of heads of multi head attention.
linear_units (int): The number of units of position-wise feed forward.
num_blocks (int): The number of decoder blocks.
dropout_rate (float): Dropout rate.
positional_dropout_rate (float): Dropout rate after adding positional encoding.
attention_dropout_rate (float): Dropout rate in attention.
input_layer (Union[str, torch.nn.Module]): Input layer type.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
macaron_style (bool): Whether to use macaron style for positionwise layer.
pos_enc_layer_type (str): Conformer positional encoding layer type.
selfattention_layer_type (str): Conformer attention layer type.
activation_type (str): Conformer activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernerl size of convolution module.
padding_idx (int): Padding idx for input_layer=embed.
"""
def __init__(self, idim, attention_dim=256, attention_heads=4, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1,
attention_dropout_rate=0.0, input_layer="conv2d", normalize_before=True, concat_after=False, positionwise_conv_kernel_size=1,
macaron_style=False, use_cnn_module=False, cnn_module_kernel=31, zero_triu=False, utt_embed=None, connect_utt_emb_at_encoder_out=True,
spk_emb_bottleneck_size=128, lang_embs=None):
super(Conformer, self).__init__()
activation = Swish()
self.conv_subsampling_factor = 1
if isinstance(input_layer, torch.nn.Module):
self.embed = input_layer
self.pos_enc = RelPositionalEncoding(attention_dim, positional_dropout_rate)
elif input_layer is None:
self.embed = None
self.pos_enc = torch.nn.Sequential(RelPositionalEncoding(attention_dim, positional_dropout_rate))
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
self.connect_utt_emb_at_encoder_out = connect_utt_emb_at_encoder_out
if utt_embed is not None:
self.hs_emb_projection = torch.nn.Linear(attention_dim + spk_emb_bottleneck_size, attention_dim)
# embedding projection derived from https://arxiv.org/pdf/1705.08947.pdf
self.embedding_projection = torch.nn.Sequential(torch.nn.Linear(utt_embed, spk_emb_bottleneck_size),
torch.nn.Softsign())
if lang_embs is not None:
self.language_embedding = torch.nn.Embedding(num_embeddings=lang_embs, embedding_dim=attention_dim)
# self-attention module definition
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (attention_heads, attention_dim, attention_dropout_rate, zero_triu)
# feed-forward module definition
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (attention_dim, linear_units, positionwise_conv_kernel_size, dropout_rate,)
# convolution module definition
convolution_layer = ConvolutionModule
convolution_layer_args = (attention_dim, cnn_module_kernel, activation)
self.encoders = repeat(num_blocks, lambda lnum: EncoderLayer(attention_dim, encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
positionwise_layer(*positionwise_layer_args) if macaron_style else None,
convolution_layer(*convolution_layer_args) if use_cnn_module else None, dropout_rate,
normalize_before, concat_after))
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
def forward(self, xs, masks, utterance_embedding=None, lang_ids=None):
"""
Encode input sequence.
Args:
utterance_embedding: embedding containing lots of conditioning signals
step: indicator for when to start updating the embedding function
xs (torch.Tensor): Input tensor (#batch, time, idim).
masks (torch.Tensor): Mask tensor (#batch, time).
Returns:
torch.Tensor: Output tensor (#batch, time, attention_dim).
torch.Tensor: Mask tensor (#batch, time).
"""
if self.embed is not None:
xs = self.embed(xs)
if lang_ids is not None:
lang_embs = self.language_embedding(lang_ids)
xs = xs + lang_embs # offset the phoneme distribution of a language
if utterance_embedding is not None and not self.connect_utt_emb_at_encoder_out:
xs = self._integrate_with_utt_embed(xs, utterance_embedding)
xs = self.pos_enc(xs)
xs, masks = self.encoders(xs, masks)
if isinstance(xs, tuple):
xs = xs[0]
if self.normalize_before:
xs = self.after_norm(xs)
if utterance_embedding is not None and self.connect_utt_emb_at_encoder_out:
xs = self._integrate_with_utt_embed(xs, utterance_embedding)
return xs, masks
def _integrate_with_utt_embed(self, hs, utt_embeddings):
# project embedding into smaller space
speaker_embeddings_projected = self.embedding_projection(utt_embeddings)
# concat hidden states with spk embeds and then apply projection
speaker_embeddings_expanded = F.normalize(speaker_embeddings_projected).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = self.hs_emb_projection(torch.cat([hs, speaker_embeddings_expanded], dim=-1))
return hs
|