import gradio as gr import numpy as np import torch from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2 def float2pcm(sig, dtype='int16'): """ https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182 """ sig = np.asarray(sig) if sig.dtype.kind != 'f': raise TypeError("'sig' must be a float array") dtype = np.dtype(dtype) if dtype.kind not in 'iu': raise TypeError("'dtype' must be an integer type") i = np.iinfo(dtype) abs_max = 2 ** (i.bits - 1) offset = i.min + abs_max return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype) class TTS_Interface: def __init__(self): self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = Meta_FastSpeech2(device=self.device) def read(self, prompt, language): language_id_lookup = { "English" : "en", "German" : "de", "Greek" : "el", "Spanish" : "es", "Finnish" : "fi", "Russian" : "ru", "Hungarian": "hu", "Dutch" : "nl", "French" : "fr" } self.model.set_language(language_id_lookup[language]) wav = self.model(prompt) return 48000, float2pcm(wav.cpu().numpy()) meta_model = TTS_Interface() iface = gr.Interface(fn=meta_model.read, inputs=[gr.inputs.Textbox(lines=2, placeholder="write what you want the synthesis to read here...", label=" "), gr.inputs.Dropdown(['English', 'German', 'Greek', 'Spanish', 'Finnish', 'Russian', 'Hungarian', 'Dutch', 'French'], type="value", default='English', label="Language Selection")], outputs=gr.outputs.Audio(type="numpy", label=None), layout="vertical", title="IMS Toucan Multilingual Multispeaker Demo", thumbnail="Utility/toucan.png", theme="default", allow_flagging="never", allow_screenshot=False) iface.launch()