Spaces:
Running
on
T4
Running
on
T4
File size: 10,598 Bytes
9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 8b95ccf 9e275b8 8b95ccf 9e275b8 70399da 9e275b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import time
import numpy as np
import torch
import torch.optim as optim
from cvxopt import matrix
from cvxopt import solvers
from cvxopt import sparse
from cvxopt import spmatrix
from torch.autograd import grad as torch_grad
from tqdm import tqdm
class WassersteinGanQuadraticCost:
def __init__(self, generator, discriminator, gen_optimizer, dis_optimizer, criterion, epochs, n_max_iterations,
data_dimensions, batch_size, device, gamma=0.1, K=-1, milestones=[150000, 250000], lr_anneal=1.0):
self.G = generator
self.G_opt = gen_optimizer
self.D = discriminator
self.D_opt = dis_optimizer
self.losses = {
'D' : [],
'WD': [],
'G' : []
}
self.num_steps = 0
self.gen_steps = 0
self.epochs = epochs
self.n_max_iterations = n_max_iterations
# put in the shape of a dataset sample
self.data_dim = data_dimensions[0] * data_dimensions[1] * data_dimensions[2]
self.batch_size = batch_size
self.device = device
self.criterion = criterion
self.mone = torch.FloatTensor([-1]).to(device)
self.tensorboard_counter = 0
if K <= 0:
self.K = 1 / self.data_dim
else:
self.K = K
self.Kr = np.sqrt(self.K)
self.LAMBDA = 2 * self.Kr * gamma * 2
self.G = self.G.to(self.device)
self.D = self.D.to(self.device)
self.schedulerD = self._build_lr_scheduler_(self.D_opt, milestones, lr_anneal)
self.schedulerG = self._build_lr_scheduler_(self.G_opt, milestones, lr_anneal)
self.c, self.A, self.pStart = self._prepare_linear_programming_solver_(self.batch_size)
def _build_lr_scheduler_(self, optimizer, milestones, lr_anneal, last_epoch=-1):
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=lr_anneal, last_epoch=-1)
return scheduler
def _quadratic_wasserstein_distance_(self, real, generated):
num_r = real.size(0)
num_f = generated.size(0)
real_flat = real.view(num_r, -1)
fake_flat = generated.view(num_f, -1)
real3D = real_flat.unsqueeze(1).expand(num_r, num_f, self.data_dim)
fake3D = fake_flat.unsqueeze(0).expand(num_r, num_f, self.data_dim)
# compute squared L2 distance
dif = real3D - fake3D
dist = 0.5 * dif.pow(2).sum(2).squeeze()
return self.K * dist
def _prepare_linear_programming_solver_(self, batch_size):
A = spmatrix(1.0, range(batch_size), [0] * batch_size, (batch_size, batch_size))
for i in range(1, batch_size):
Ai = spmatrix(1.0, range(batch_size), [i] * batch_size, (batch_size, batch_size))
A = sparse([A, Ai])
D = spmatrix(-1.0, range(batch_size), range(batch_size), (batch_size, batch_size))
DM = D
for i in range(1, batch_size):
DM = sparse([DM, D])
A = sparse([[A], [DM]])
cr = matrix([-1.0 / batch_size] * batch_size)
cf = matrix([1.0 / batch_size] * batch_size)
c = matrix([cr, cf])
pStart = {}
pStart['x'] = matrix([matrix([1.0] * batch_size), matrix([-1.0] * batch_size)])
pStart['s'] = matrix([1.0] * (2 * batch_size))
return c, A, pStart
def _linear_programming_(self, distance, batch_size):
b = matrix(distance.cpu().double().detach().numpy().flatten())
sol = solvers.lp(self.c, self.A, b, primalstart=self.pStart, solver='glpk',
options={'glpk': {'msg_lev': 'GLP_MSG_OFF'}})
offset = 0.5 * (sum(sol['x'])) / batch_size
sol['x'] = sol['x'] - offset
self.pStart['x'] = sol['x']
self.pStart['s'] = sol['s']
return sol
def _approx_OT_(self, sol):
# Compute the OT mapping for each fake dataset
ResMat = np.array(sol['z']).reshape((self.batch_size, self.batch_size))
mapping = torch.from_numpy(np.argmax(ResMat, axis=0)).long().to(self.device)
return mapping
def _optimal_transport_regularization_(self, output_fake, fake, real_fake_diff):
output_fake_grad = torch.ones(output_fake.size()).to(self.device)
gradients = torch_grad(outputs=output_fake, inputs=fake,
grad_outputs=output_fake_grad,
create_graph=True, retain_graph=True, only_inputs=True)[0]
n = gradients.size(0)
RegLoss = 0.5 * ((gradients.view(n, -1).norm(dim=1) / (2 * self.Kr) - self.Kr / 2 * real_fake_diff.view(n,
-1).norm(
dim=1)).pow(2)).mean()
fake.requires_grad = False
return RegLoss
def _critic_deep_regression_(self, images, opt_iterations=1):
images = images.to(self.device)
for p in self.D.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
self.G.train()
self.D.train()
# Get generated fake dataset
generated_data = self.sample_generator(self.batch_size)
# compute wasserstein distance
distance = self._quadratic_wasserstein_distance_(images, generated_data)
# solve linear programming problem
sol = self._linear_programming_(distance, self.batch_size)
# approximate optimal transport
mapping = self._approx_OT_(sol)
real_ordered = images[mapping] # match real and fake
real_fake_diff = real_ordered - generated_data
# construct target
target = torch.from_numpy(np.array(sol['x'])).float()
target = target.squeeze().to(self.device)
for i in range(opt_iterations):
self.D.zero_grad() # ???
self.D_opt.zero_grad()
generated_data.requires_grad_()
if generated_data.grad is not None:
generated_data.grad.data.zero_()
output_real = self.D(images)
output_fake = self.D(generated_data)
output_real, output_fake = output_real.squeeze(), output_fake.squeeze()
output_R_mean = output_real.mean(0).view(1)
output_F_mean = output_fake.mean(0).view(1)
L2LossD_real = self.criterion(output_R_mean[0], target[:self.batch_size].mean())
L2LossD_fake = self.criterion(output_fake, target[self.batch_size:])
L2LossD = 0.5 * L2LossD_real + 0.5 * L2LossD_fake
reg_loss_D = self._optimal_transport_regularization_(output_fake, generated_data, real_fake_diff)
total_loss = L2LossD + self.LAMBDA * reg_loss_D
self.losses['D'].append(float(total_loss.data))
total_loss.backward()
self.D_opt.step()
# this is supposed to be the wasserstein distance
wasserstein_distance = output_R_mean - output_F_mean
self.losses['WD'].append(float(wasserstein_distance.data))
def _generator_train_iteration(self, batch_size):
for p in self.D.parameters():
p.requires_grad = False # freeze critic
self.G.zero_grad()
self.G_opt.zero_grad()
if isinstance(self.G, torch.nn.parallel.DataParallel):
z = self.G.module.sample_latent(batch_size, self.G.module.z_dim)
else:
z = self.G.sample_latent(batch_size, self.G.z_dim)
z.requires_grad = True
fake = self.G(z)
output_fake = self.D(fake)
output_F_mean_after = output_fake.mean(0).view(1)
self.losses['G'].append(float(output_F_mean_after.data))
output_F_mean_after.backward(self.mone)
self.G_opt.step()
self.schedulerD.step()
self.schedulerG.step()
def _train_epoch(self, data_loader, writer, experiment):
for i, data in enumerate(tqdm(data_loader)):
images = data[0]
speaker_ids = data[1]
self.num_steps += 1
# self.tensorboard_counter += 1
if self.gen_steps >= self.n_max_iterations:
return
self._critic_deep_regression_(images)
self._generator_train_iteration(images.size(0))
D_loss_avg = np.average(self.losses['D'])
G_loss_avg = np.average(self.losses['G'])
wd_avg = np.average(self.losses['WD'])
def train(self, data_loader, writer, experiment=None):
self.G.train()
self.D.train()
for epoch in range(self.epochs):
if self.gen_steps >= self.n_max_iterations:
return
time_start_epoch = time.time()
self._train_epoch(data_loader, writer, experiment)
D_loss_avg = np.average(self.losses['D'])
time_end_epoch = time.time()
return self
def sample_generator(self, num_samples, nograd=False, return_intermediate=False):
self.G.eval()
if isinstance(self.G, torch.nn.parallel.DataParallel):
latent_samples = self.G.module.sample_latent(num_samples, self.G.module.z_dim, 1.0)
else:
latent_samples = self.G.sample_latent(num_samples, self.G.z_dim, 1.0)
latent_samples = latent_samples.to(self.device)
if nograd:
with torch.no_grad():
generated_data = self.G(latent_samples, return_intermediate=return_intermediate)
else:
generated_data = self.G(latent_samples)
self.G.train()
if return_intermediate:
return generated_data[0].detach(), generated_data[1], latent_samples
return generated_data.detach()
def sample(self, num_samples):
generated_data = self.sample_generator(num_samples)
# Remove color channel
return generated_data.data.cpu().numpy()[:, 0, :, :]
def save_model_checkpoint(self, model_path, model_parameters, timestampStr):
# dateTimeObj = datetime.now()
# timestampStr = dateTimeObj.strftime("%d-%m-%Y-%H-%M-%S")
name = '%s_%s' % (timestampStr, 'wgan')
model_filename = os.path.join(model_path, name)
torch.save({
'generator_state_dict' : self.G.state_dict(),
'critic_state_dict' : self.D.state_dict(),
'gen_optimizer_state_dict' : self.G_opt.state_dict(),
'critic_optimizer_state_dict': self.D_opt.state_dict(),
'model_parameters' : model_parameters,
'iterations' : self.num_steps
}, model_filename)
|