Spaces:
Running
on
T4
Running
on
T4
File size: 6,486 Bytes
9e275b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import glob
import json
import os
import pathlib
import random
import re
import sys
import time
import matplotlib.pylab as plt
import numpy as np
import torch
import yaml
from torch import distributed as dist
from torch.nn.utils import weight_norm
def seed_everything(seed, cudnn_deterministic=False):
"""
Function that sets seed for pseudo-random number generators in:
pytorch, numpy, python.random
Args:
seed: the integer value seed for global random state
"""
if seed is not None:
# print(f"Global seed set to {seed}")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# if cudnn_deterministic:
# torch.backends.cudnn.deterministic = True
# warnings.warn('You have chosen to seed training. '
# 'This will turn on the CUDNN deterministic setting, '
# 'which can slow down your training considerably! '
# 'You may see unexpected behavior when restarting '
# 'from checkpoints.')
def is_primary():
return get_rank() == 0
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def load_yaml_config(path):
with open(path) as f:
config = yaml.full_load(f)
return config
def save_config_to_yaml(config, path):
assert path.endswith('.yaml')
with open(path, 'w') as f:
f.write(yaml.dump(config))
f.close()
def save_dict_to_json(d, path, indent=None):
json.dump(d, open(path, 'w'), indent=indent)
def load_dict_from_json(path):
return json.load(open(path, 'r'))
def write_args(args, path):
args_dict = dict((name, getattr(args, name)) for name in dir(args)
if not name.startswith('_'))
with open(path, 'a') as args_file:
args_file.write('==> torch version: {}\n'.format(torch.__version__))
args_file.write(
'==> cudnn version: {}\n'.format(torch.backends.cudnn.version()))
args_file.write('==> Cmd:\n')
args_file.write(str(sys.argv))
args_file.write('\n==> args:\n')
for k, v in sorted(args_dict.items()):
args_file.write(' %s: %s\n' % (str(k), str(v)))
args_file.close()
class Logger(object):
def __init__(self, args):
self.args = args
self.save_dir = args.save_dir
self.is_primary = is_primary()
if self.is_primary:
os.makedirs(self.save_dir, exist_ok=True)
# save the args and config
self.config_dir = os.path.join(self.save_dir, 'configs')
os.makedirs(self.config_dir, exist_ok=True)
file_name = os.path.join(self.config_dir, 'args.txt')
write_args(args, file_name)
log_dir = os.path.join(self.save_dir, 'logs')
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
self.text_writer = open(os.path.join(log_dir, 'log.txt'),
'a') # 'w')
if args.tensorboard:
self.log_info('using tensorboard')
self.tb_writer = torch.utils.tensorboard.SummaryWriter(
log_dir=log_dir
) # tensorboard.SummaryWriter(log_dir=log_dir)
else:
self.tb_writer = None
def save_config(self, config):
if self.is_primary:
save_config_to_yaml(config,
os.path.join(self.config_dir, 'config.yaml'))
def log_info(self, info, check_primary=True):
if self.is_primary or (not check_primary):
print(info)
if self.is_primary:
info = str(info)
time_str = time.strftime('%Y-%m-%d-%H-%M')
info = '{}: {}'.format(time_str, info)
if not info.endswith('\n'):
info += '\n'
self.text_writer.write(info)
self.text_writer.flush()
def add_scalar(self, **kargs):
"""Log a scalar variable."""
if self.is_primary:
if self.tb_writer is not None:
self.tb_writer.add_scalar(**kargs)
def add_scalars(self, **kargs):
"""Log a scalar variable."""
if self.is_primary:
if self.tb_writer is not None:
self.tb_writer.add_scalars(**kargs)
def add_image(self, **kargs):
"""Log a scalar variable."""
if self.is_primary:
if self.tb_writer is not None:
self.tb_writer.add_image(**kargs)
def add_images(self, **kargs):
"""Log a scalar variable."""
if self.is_primary:
if self.tb_writer is not None:
self.tb_writer.add_images(**kargs)
def close(self):
if self.is_primary:
self.text_writer.close()
self.tb_writer.close()
def plot_spectrogram(spectrogram):
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(
spectrogram, aspect="auto", origin="lower", interpolation='none')
plt.colorbar(im, ax=ax)
fig.canvas.draw()
plt.close()
return fig
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def apply_weight_norm(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
weight_norm(m)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def save_checkpoint(filepath, obj, num_ckpt_keep=5):
name = re.match(r'(do|g)_\d+', pathlib.Path(filepath).name).group(1)
ckpts = sorted(pathlib.Path(filepath).parent.glob(f'{name}_*'))
if len(ckpts) > num_ckpt_keep:
[os.remove(c) for c in ckpts[:-num_ckpt_keep]]
print("Saving checkpoint to {}".format(filepath))
torch.save(obj, filepath)
print("Complete.")
def scan_checkpoint(cp_dir, prefix):
pattern = os.path.join(cp_dir, prefix + '????????')
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return None
return sorted(cp_list)[-1]
|