Spaces:
Running
on
T4
Running
on
T4
File size: 48,063 Bytes
9e275b8 70399da 9e275b8 1d10354 9e275b8 70399da 9e275b8 97bcef9 70399da 97bcef9 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 1d10354 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 1d10354 9e275b8 1d10354 9e275b8 1d10354 9e275b8 1d10354 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 1d10354 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da 9e275b8 70399da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 |
# -*- coding: utf-8 -*-
import json
import logging
import re
from pathlib import Path
import torch
from dragonmapper.transcriptions import pinyin_to_ipa
from phonemizer.backend import EspeakBackend
from pypinyin import pinyin
from Preprocessing.articulatory_features import generate_feature_table
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Preprocessing.articulatory_features import get_phone_to_id
def load_json_from_path(path): # redundant to the one in utils, but necessary to avoid circular imports
with open(path, "r", encoding="utf8") as f:
obj = json.loads(f.read())
return obj
class ArticulatoryCombinedTextFrontend:
def __init__(self,
language,
use_explicit_eos=True,
use_lexical_stress=True,
silent=True,
add_silence_to_end=True,
use_word_boundaries=True,
device="cpu"):
"""
Mostly preparing ID lookups
"""
# this locks the device, so it has to happen here and not at the top
from transphone.g2p import read_g2p
self.language = language
self.use_explicit_eos = use_explicit_eos
self.use_stress = use_lexical_stress
self.add_silence_to_end = add_silence_to_end
self.use_word_boundaries = use_word_boundaries
register_to_height = {
"˥": 5,
"˦": 4,
"˧": 3,
"˨": 2,
"˩": 1
}
self.rising_perms = list()
self.falling_perms = list()
self.peaking_perms = list()
self.dipping_perms = list()
for first_tone in ["˥", "˦", "˧", "˨", "˩"]:
for second_tone in ["˥", "˦", "˧", "˨", "˩"]:
if register_to_height[first_tone] > register_to_height[second_tone]:
self.falling_perms.append(first_tone + second_tone)
else:
self.rising_perms.append(first_tone + second_tone)
for third_tone in ["˥", "˦", "˧", "˨", "˩"]:
if register_to_height[first_tone] > register_to_height[second_tone] < register_to_height[third_tone]:
self.dipping_perms.append(first_tone + second_tone + third_tone)
elif register_to_height[first_tone] < register_to_height[second_tone] > register_to_height[third_tone]:
self.peaking_perms.append(first_tone + second_tone + third_tone)
if language == "eng" or language == "en-us":
self.g2p_lang = "en-us" # English as spoken in USA
self.expand_abbreviations = english_text_expansion
self.phonemizer = "espeak"
elif language == "deu":
self.g2p_lang = "de" # German
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ell":
self.g2p_lang = "el" # Greek
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "spa":
self.g2p_lang = "es" # Spanish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "spa-lat":
self.g2p_lang = "es-419" # Spanish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "fin":
self.g2p_lang = "fi" # Finnish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "rus":
self.g2p_lang = "ru" # Russian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "hun":
self.g2p_lang = "hu" # Hungarian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "nld":
self.g2p_lang = "nl" # Dutch
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "fra":
self.g2p_lang = "fr-fr" # French
self.expand_abbreviations = remove_french_spacing
self.phonemizer = "espeak"
elif language == "fr-be":
self.g2p_lang = "fr-be" # French
self.expand_abbreviations = remove_french_spacing
self.phonemizer = "espeak"
elif language == "fr-sw":
self.g2p_lang = "fr-ch" # French
self.expand_abbreviations = remove_french_spacing
self.phonemizer = "espeak"
elif language == "ita":
self.g2p_lang = "it" # Italian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "por":
self.g2p_lang = "pt" # Portuguese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "pt-br":
self.g2p_lang = "pt-br" # Portuguese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "pol":
self.g2p_lang = "pl" # Polish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "cmn":
self.g2p_lang = "cmn" # Mandarin
self.expand_abbreviations = convert_kanji_to_pinyin_mandarin
self.phonemizer = "dragonmapper"
elif language == "vie":
self.g2p_lang = "vi" # Northern Vietnamese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "vi-ctr":
self.g2p_lang = "vi-vn-x-central" # Central Vietnamese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "vi-so":
self.g2p_lang = "vi-vn-x-south" # Southern Vietnamese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ukr":
self.g2p_lang = "uk" # Ukrainian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "pes":
self.g2p_lang = "fa" # Western Farsi
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "afr":
self.g2p_lang = "af" # Afrikaans
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "aln":
self.g2p_lang = "sq" # Albanian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "amh":
self.g2p_lang = "am" # Amharic
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "arb":
self.g2p_lang = "ar" # Arabic
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "arg":
self.g2p_lang = "an" # Aragonese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "hye":
self.g2p_lang = "hy" # East Armenian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "hyw":
self.g2p_lang = "hyw" # West Armenian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "azj":
self.g2p_lang = "az" # Azerbaijani
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "bak":
self.g2p_lang = "ba" # Bashkir
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "eus":
self.g2p_lang = "eu" # Basque
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "bel":
self.g2p_lang = "be" # Belarusian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ben":
self.g2p_lang = "bn" # Bengali
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "bpy":
self.g2p_lang = "bpy" # Bishnupriya Manipuri
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "bos":
self.g2p_lang = "bs" # Bosnian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "bul":
self.g2p_lang = "bg" # Bulgarian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "mya":
self.g2p_lang = "my" # Burmese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "chr":
self.g2p_lang = "chr" # Cherokee
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "yue":
self.g2p_lang = "yue" # Chinese Cantonese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "hak":
self.g2p_lang = "hak" # Chinese Hakka
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "haw":
self.g2p_lang = "haw" # Hawaiian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "hrv":
self.g2p_lang = "hr" # Croatian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ces":
self.g2p_lang = "cs" # Czech
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "dan":
self.g2p_lang = "da" # Danish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ekk":
self.g2p_lang = "et" # Estonian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "gle":
self.g2p_lang = "ga" # Gaelic Irish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "gla":
self.g2p_lang = "gd" # Gaelic Scottish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "en-sc":
self.g2p_lang = "en-gb-scotland"
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "kat":
self.g2p_lang = "ka" # Georgian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "kal":
self.g2p_lang = "kl" # Greenlandic
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "guj":
self.g2p_lang = "gu" # Gujarati
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "heb":
self.g2p_lang = "he" # Hebrew
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "hin":
self.g2p_lang = "hi" # Hindi
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "isl":
self.g2p_lang = "is" # Icelandic
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ind":
self.g2p_lang = "id" # Indonesian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "jpn":
import pykakasi
self.kakasi = pykakasi.Kakasi() # this is not a satisfactory solution, but it is the best one I could come up with so far.
self.expand_abbreviations = lambda x: " ".join([chunk["hepburn"] for chunk in self.kakasi.convert(x)])
self.g2p_lang = language
self.phonemizer = "transphone"
self.transphone = read_g2p(device=device)
elif language == "kan":
self.g2p_lang = "kn" # Kannada
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "knn":
self.g2p_lang = "kok" # Konkani
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "kor":
self.g2p_lang = "ko" # Korean
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ckb":
self.g2p_lang = "ku" # Kurdish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "kaz":
self.g2p_lang = "kk" # Kazakh
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "kir":
self.g2p_lang = "ky" # Kyrgyz
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "lat":
self.g2p_lang = "la" # Latin
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ltz":
self.g2p_lang = "lb" # Luxembourgish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "lvs":
self.g2p_lang = "lv" # Latvian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "lit":
self.g2p_lang = "lt" # Lithuanian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "mri":
self.g2p_lang = "mi" # Māori
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "mkd":
self.g2p_lang = "mk" # Macedonian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "zlm":
self.g2p_lang = "ms" # Malay
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "mal":
self.g2p_lang = "ml" # Malayalam
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "mlt":
self.g2p_lang = "mt" # Maltese
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "mar":
self.g2p_lang = "mr" # Marathi
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "nci":
self.g2p_lang = "nci" # Nahuatl
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "npi":
self.g2p_lang = "ne" # Nepali
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "nob":
self.g2p_lang = "nb" # Norwegian Bokmål
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "nog":
self.g2p_lang = "nog" # Nogai
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ory":
self.g2p_lang = "or" # Oriya
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "gaz":
self.g2p_lang = "om" # Oromo
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "pap":
self.g2p_lang = "pap" # Papiamento
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "pan":
self.g2p_lang = "pa" # Punjabi
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "ron":
self.g2p_lang = "ro" # Romanian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "lav":
self.g2p_lang = "ru-lv" # Russian Latvia
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "srp":
self.g2p_lang = "sr" # Serbian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "tsn":
self.g2p_lang = "tn" # Setswana
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "snd":
self.g2p_lang = "sd" # Sindhi
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "slk":
self.g2p_lang = "sk" # Slovak
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "slv":
self.g2p_lang = "sl" # Slovenian
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "smj":
self.g2p_lang = "smj" # Lule Saami
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "swh":
self.g2p_lang = "sw" # Swahili
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "swe":
self.g2p_lang = "sv" # Swedish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "tam":
self.g2p_lang = "ta" # Tamil
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "tha":
self.g2p_lang = "th" # Thai
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "tuk":
self.g2p_lang = "tk" # Turkmen
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "tat":
self.g2p_lang = "tt" # Tatar
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "tel":
self.g2p_lang = "te" # Telugu
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "tur":
self.g2p_lang = "tr" # Turkish
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "uig":
self.g2p_lang = "ug" # Uyghur
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "urd":
self.g2p_lang = "ur" # Urdu
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "uzn":
self.g2p_lang = "uz" # Uzbek
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
elif language == "cym":
self.g2p_lang = "cy" # Welsh
self.expand_abbreviations = lambda x: x
self.phonemizer = "espeak"
else:
# blanket solution for the rest
print("Using Transphone. A specialized phonemizer might work better.")
self.g2p_lang = language
self.phonemizer = "transphone"
self.expand_abbreviations = lambda x: x
self.transphone = read_g2p(device=device)
# remember to also update get_language_id() below when adding something here, as well as the get_example_sentence function
if self.phonemizer == "espeak":
try:
self.phonemizer_backend = EspeakBackend(language=self.g2p_lang,
punctuation_marks=';:,.!?¡¿—…()"«»“”~/。【】、‥،؟“”؛',
preserve_punctuation=True,
language_switch='remove-flags',
with_stress=self.use_stress,
logger=logging.getLogger(__file__))
except RuntimeError:
print("Error in loading espeak! \n"
"Maybe espeak is not installed on your system? \n"
"Falling back to transphone.")
from transphone.g2p import read_g2p
self.g2p_lang = self.language
self.phonemizer = "transphone"
self.expand_abbreviations = lambda x: x
self.transphone = read_g2p()
self.phone_to_vector = generate_feature_table()
self.phone_to_id = get_phone_to_id()
self.id_to_phone = {v: k for k, v in self.phone_to_id.items()}
self.text_vector_to_phone_cache = dict()
@staticmethod
def get_example_sentence(lang):
if lang == "eng":
return "This is a complex sentence, it even has a pause!"
elif lang == "deu":
return "Dies ist ein komplexer Satz, er hat sogar eine Pause!"
elif lang == "ell":
return "Αυτή είναι μια σύνθετη πρόταση, έχει ακόμη και παύση!"
elif lang == "spa":
return "Esta es una oración compleja, ¡incluso tiene una pausa!"
elif lang == "fin":
return "Tämä on monimutkainen lause, sillä on jopa tauko!"
elif lang == "rus":
return "Это сложное предложение, в нем даже есть пауза!"
elif lang == "hun":
return "Ez egy összetett mondat, még szünet is van benne!"
elif lang == "nld":
return "Dit is een complexe zin, er zit zelfs een pauze in!"
elif lang == "fra":
return "C'est une phrase complexe, elle a même une pause !"
elif lang == "por":
return "Esta é uma frase complexa, tem até uma pausa!"
elif lang == "pol":
return "To jest zdanie złożone, ma nawet pauzę!"
elif lang == "ita":
return "Questa è una frase complessa, ha anche una pausa!"
elif lang == "cmn":
return "这是一个复杂的句子,它甚至包含一个停顿。"
elif lang == "vie":
return "Đây là một câu phức tạp, nó thậm chí còn chứa một khoảng dừng."
else:
print(f"No example sentence specified for the language: {lang}\n "
f"Please specify an example sentence in the get_example_sentence function in Preprocessing/TextFrontend to track your progress.")
return None
def string_to_tensor(self, text, view=False, device="cpu", handle_missing=True, input_phonemes=False):
"""
Fixes unicode errors, expands some abbreviations,
turns graphemes into phonemes and then vectorizes
the sequence as articulatory features
"""
if input_phonemes:
phones = text
else:
phones = self.get_phone_string(text=text, include_eos_symbol=True, for_feature_extraction=True)
phones = phones.replace("ɚ", "ə").replace("ᵻ", "ɨ")
if view:
print("Phonemes: \n{}\n".format(phones))
phones_vector = list()
# turn into numeric vectors
stressed_flag = False
for char in phones:
# affects following phoneme -----------------
if char.strip() == '\u02C8':
# primary stress
stressed_flag = True
# affects previous phoneme -----------------
elif char.strip() == '\u02D0':
# lengthened
phones_vector[-1][get_feature_to_index_lookup()["lengthened"]] = 1
elif char.strip() == '\u02D1':
# half length
phones_vector[-1][get_feature_to_index_lookup()["half-length"]] = 1
elif char.strip() == '\u0306':
# shortened
phones_vector[-1][get_feature_to_index_lookup()["shortened"]] = 1
elif char.strip() == '̃' and phones_vector[-1][get_feature_to_index_lookup()["nasal"]] != 1:
# nasalized (vowel)
phones_vector[-1][get_feature_to_index_lookup()["nasal"]] = 2
elif char.strip() == "̧" != phones_vector[-1][get_feature_to_index_lookup()["palatal"]] != 1:
# palatalized
phones_vector[-1][get_feature_to_index_lookup()["palatal"]] = 2
elif char.strip() == "ʷ" and phones_vector[-1][get_feature_to_index_lookup()["labial-velar"]] != 1:
# labialized
phones_vector[-1][get_feature_to_index_lookup()["labial-velar"]] = 2
elif char.strip() == "ʰ" and phones_vector[-1][get_feature_to_index_lookup()["aspirated"]] != 1:
# aspirated
phones_vector[-1][get_feature_to_index_lookup()["aspirated"]] = 2
elif char.strip() == "ˠ" and phones_vector[-1][get_feature_to_index_lookup()["velar"]] != 1:
# velarized
phones_vector[-1][get_feature_to_index_lookup()["velar"]] = 2
elif char.strip() == "ˁ" and phones_vector[-1][get_feature_to_index_lookup()["pharyngal"]] != 1:
# pharyngealized
phones_vector[-1][get_feature_to_index_lookup()["pharyngal"]] = 2
elif char.strip() == "ˀ" and phones_vector[-1][get_feature_to_index_lookup()["glottal"]] != 1:
# glottalized
phones_vector[-1][get_feature_to_index_lookup()["glottal"]] = 2
elif char.strip() == "ʼ" and phones_vector[-1][get_feature_to_index_lookup()["ejective"]] != 1:
# ejective
phones_vector[-1][get_feature_to_index_lookup()["ejective"]] = 2
elif char.strip() == "̹" and phones_vector[-1][get_feature_to_index_lookup()["rounded"]] != 1:
# rounding
phones_vector[-1][get_feature_to_index_lookup()["rounded"]] = 2
elif char.strip() == "̞" and phones_vector[-1][get_feature_to_index_lookup()["open"]] != 1:
# open
phones_vector[-1][get_feature_to_index_lookup()["open"]] = 2
elif char.strip() == "̪" and phones_vector[-1][get_feature_to_index_lookup()["dental"]] != 1:
# dental
phones_vector[-1][get_feature_to_index_lookup()["dental"]] = 2
elif char.strip() == "̬" and phones_vector[-1][get_feature_to_index_lookup()["voiced"]] != 1:
# voiced
phones_vector[-1][get_feature_to_index_lookup()["voiced"]] = 2
elif char.strip() == "̝" and phones_vector[-1][get_feature_to_index_lookup()["close"]] != 1:
# closed
phones_vector[-1][get_feature_to_index_lookup()["close"]] = 2
elif char.strip() == "̰" and phones_vector[-1][get_feature_to_index_lookup()["glottal"]] != 1 and phones_vector[-1][get_feature_to_index_lookup()["epiglottal"]] != 1:
# laryngalization
phones_vector[-1][get_feature_to_index_lookup()["glottal"]] = 2
phones_vector[-1][get_feature_to_index_lookup()["epiglottal"]] = 2
elif char.strip() == "̈" and phones_vector[-1][get_feature_to_index_lookup()["central"]] != 1:
# centralization
phones_vector[-1][get_feature_to_index_lookup()["central"]] = 2
elif char.strip() == "̜" and phones_vector[-1][get_feature_to_index_lookup()["unrounded"]] != 1:
# unrounded
phones_vector[-1][get_feature_to_index_lookup()["unrounded"]] = 2
elif char.strip() == "̥" and phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] != 1:
# voiceless
phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] = 2
elif char.strip() == "˥":
# very high tone
phones_vector[-1][get_feature_to_index_lookup()["very-high-tone"]] = 1
elif char.strip() == "˦":
# high tone
phones_vector[-1][get_feature_to_index_lookup()["high-tone"]] = 1
elif char.strip() == "˧":
# mid tone
phones_vector[-1][get_feature_to_index_lookup()["mid-tone"]] = 1
elif char.strip() == "˨":
# low tone
phones_vector[-1][get_feature_to_index_lookup()["low-tone"]] = 1
elif char.strip() == "˩":
# very low tone
phones_vector[-1][get_feature_to_index_lookup()["very-low-tone"]] = 1
elif char.strip() == "⭧":
# rising tone
phones_vector[-1][get_feature_to_index_lookup()["rising-tone"]] = 1
elif char.strip() == "⭨":
# falling tone
phones_vector[-1][get_feature_to_index_lookup()["falling-tone"]] = 1
elif char.strip() == "⮁":
# peaking tone
phones_vector[-1][get_feature_to_index_lookup()["peaking-tone"]] = 1
elif char.strip() == "⮃":
# dipping tone
phones_vector[-1][get_feature_to_index_lookup()["dipping-tone"]] = 1
else:
if handle_missing:
try:
phones_vector.append(self.phone_to_vector[char].copy())
except KeyError:
print("unknown phoneme: {}".format(char))
else:
phones_vector.append(self.phone_to_vector[char].copy()) # leave error handling to elsewhere
# the following lines try to emulate whispering by removing all voiced features
# phones_vector[-1][get_feature_to_index_lookup()["voiced"]] = 0
# phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] = 1
# the following lines explore what would happen, if the system is told to produce sounds a human cannot
# for dim, _ in enumerate(phones_vector[-1]):
# phones_vector[-1][dim] = 1
if stressed_flag:
stressed_flag = False
phones_vector[-1][get_feature_to_index_lookup()["stressed"]] = 1
return torch.Tensor(phones_vector, device=device)
def get_phone_string(self, text, include_eos_symbol=True, for_feature_extraction=False, for_plot_labels=False):
if text == "":
return ""
# expand abbreviations
utt = self.expand_abbreviations(text)
# convert the graphemes to phonemes here
if self.phonemizer == "espeak":
try:
phones = self.phonemizer_backend.phonemize([utt], strip=True)[0] # To use a different phonemizer, this is the only line that needs to be exchanged
except:
print(f"There was an error with espeak. \nFalling back to transphone.\nSentence: {utt} \nLanguage {self.g2p_lang}")
from transphone.g2p import read_g2p
self.g2p_lang = self.language
self.phonemizer = "transphone"
self.expand_abbreviations = lambda x: x
self.transphone = read_g2p()
return self.get_phone_string(text, include_eos_symbol, for_feature_extraction, for_plot_labels)
elif self.phonemizer == "transphone":
replacements = [
# punctuation in languages with non-latin script
("。", "~"),
(",", "~"),
("【", '~'),
("】", '~'),
("、", "~"),
("‥", "~"),
("؟", "~"),
("،", "~"),
("“", '~'),
("”", '~'),
("؛", "~"),
("《", '~'),
("》", '~'),
("?", "~"),
("!", "~"),
(" :", "~"),
(" ;", "~"),
("-", "~"),
("·", " "),
("`", ""),
# symbols that indicate a pause or silence
('"', "~"),
(" - ", "~ "),
("- ", "~ "),
("-", ""),
("…", "~"),
(":", "~"),
(";", "~"),
(",", "~") # make sure this remains the final one when adding new ones
]
for replacement in replacements:
utt = utt.replace(replacement[0], replacement[1])
utt = re.sub("~+", "~", utt)
utt = re.sub(r"\s+", " ", utt)
utt = re.sub(r"\.+", ".", utt)
chunk_list = list()
for chunk in utt.split("~"):
# unfortunately the transphone tokenizer is not suited for any languages besides English it seems
# this is not much better, but maybe a little.
word_list = list()
for word_by_whitespace in chunk.split():
word_list.append(self.transphone.inference(word_by_whitespace, self.g2p_lang))
chunk_list.append(" ".join(["".join(word) for word in word_list]))
phones = "~ ".join(chunk_list)
elif self.phonemizer == "dragonmapper":
phones = pinyin_to_ipa(utt)
# Unfortunately tonal languages don't agree on the tone, most tonal
# languages use different tones denoted by different numbering
# systems. At this point in the script, it is attempted to unify
# them all to the tones in the IPA standard.
if self.g2p_lang == "vi" or self.g2p_lang == "vi-vn-x-central" or self.g2p_lang == "vi-vn-x-south":
phones = phones.replace('1', "˧")
phones = phones.replace('2', "˨˩")
phones = phones.replace('ɜ', "˧˥") # I'm fairly certain that this is a bug in espeak and ɜ is meant to be 3
phones = phones.replace('3', "˧˥") # I'm fairly certain that this is a bug in espeak and ɜ is meant to be 3
phones = phones.replace('4', "˦˧˥")
phones = phones.replace('5', "˧˩˧")
phones = phones.replace('6', "˧˩˨ʔ") # very weird tone, because the tone introduces another phoneme
phones = phones.replace('7', "˧")
elif self.g2p_lang == "yue":
phones = phones.replace('1', "˥")
phones = phones.replace('2', "˧˥")
phones = phones.replace('3', "˧")
phones = phones.replace('4', "˧˩")
phones = phones.replace('5', "˩˧")
phones = phones.replace('6', "˨")
# more of this handling for more tonal languages can be added here, simply make an elif statement and check for the language.
return self.postprocess_phoneme_string(phones, for_feature_extraction, include_eos_symbol, for_plot_labels)
def postprocess_phoneme_string(self, phoneme_string, for_feature_extraction, include_eos_symbol, for_plot_labels):
"""
Takes as input a phoneme string and processes it to work best with the way we represent phonemes as featurevectors
"""
replacements = [
# punctuation in languages with non-latin script
("。", "."),
(",", ","),
("【", '"'),
("】", '"'),
("、", ","),
("‥", "…"),
("؟", "?"),
("،", ","),
("“", '"'),
("”", '"'),
("؛", ","),
("《", '"'),
("》", '"'),
("?", "?"),
("!", "!"),
(" :", ":"),
(" ;", ";"),
("-", "-"),
("·", " "),
# latin script punctuation
("/", " "),
("—", ""),
("(", "~"),
(")", "~"),
("...", "…"),
("\n", ", "),
("\t", " "),
("¡", ""),
("¿", ""),
("«", '"'),
("»", '"'),
# unifying some phoneme representations
("N", "ŋ"), # somehow transphone doesn't transform this to IPA
("ɫ", "l"), # alveolopalatal
("ɚ", "ə"),
("g", "ɡ"),
("ε", "e"),
("ʦ", "ts"),
("ˤ", "ˁ"),
('ᵻ', 'ɨ'),
("ɧ", "ç"), # velopalatal
("ɥ", "j"), # labiopalatal
("ɬ", "s"), # lateral
("ɮ", "z"), # lateral
('ɺ', 'ɾ'), # lateral
('ʲ', 'j'), # decomposed palatalization
('\u02CC', ""), # secondary stress
('\u030B', "˥"),
('\u0301', "˦"),
('\u0304', "˧"),
('\u0300', "˨"),
('\u030F', "˩"),
('\u0302', "⭨"),
('\u030C', "⭧"),
("꜖", "˩"),
("꜕", "˨"),
("꜔", "˧"),
("꜓", "˦"),
("꜒", "˥"),
# symbols that indicate a pause or silence
('"', "~"),
(" - ", "~ "),
("- ", "~ "),
("-", ""),
("…", "."),
(":", "~"),
(";", "~"),
(",", "~") # make sure this remains the final one when adding new ones
]
unsupported_ipa_characters = {'̙', '̯', '̤', '̩', '̠', '̟', 'ꜜ', '̽', '|', '•', '↘',
'‖', '‿', 'ᷝ', 'ᷠ', '̚', '↗', 'ꜛ', '̻', '̘', '͡', '̺'}
# https://en.wikipedia.org/wiki/IPA_number
for char in unsupported_ipa_characters:
replacements.append((char, ""))
if not for_feature_extraction:
# in case we want to plot etc., we only need the segmental units, so we remove everything else.
replacements = replacements + [
('\u02C8', ""), # primary stress
('\u02D0', ""), # lengthened
('\u02D1', ""), # half-length
('\u0306', ""), # shortened
("˥", ""), # very high tone
("˦", ""), # high tone
("˧", ""), # mid tone
("˨", ""), # low tone
("˩", ""), # very low tone
('\u030C', ""), # rising tone
('\u0302', ""), # falling tone
('⭧', ""), # rising
('⭨', ""), # falling
('⮃', ""), # dipping
('⮁', ""), # peaking
('̃', ""), # nasalizing
("̧", ""), # palatalized
("ʷ", ""), # labialized
("ʰ", ""), # aspirated
("ˠ", ""), # velarized
("ˁ", ""), # pharyngealized
("ˀ", ""), # glottalized
("ʼ", ""), # ejective
("̹", ""), # rounding
("̞", ""), # open
("̪", ""), # dental
("̬", ""), # voiced
("̝", ""), # closed
("̰", ""), # laryngalization
("̈", ""), # centralization
("̜", ""), # unrounded
("̥", ""), # voiceless
]
for replacement in replacements:
phoneme_string = phoneme_string.replace(replacement[0], replacement[1])
phones = re.sub("~+", "~", phoneme_string)
phones = re.sub(r"\s+", " ", phones)
phones = re.sub(r"\.+", ".", phones)
phones = phones.lstrip("~").rstrip("~")
# peaking tones
for peaking_perm in self.peaking_perms:
phones = phones.replace(peaking_perm, "⮁".join(peaking_perm))
# dipping tones
for dipping_perm in self.dipping_perms:
phones = phones.replace(dipping_perm, "⮃".join(dipping_perm))
# rising tones
for rising_perm in self.rising_perms:
phones = phones.replace(rising_perm, "⭧".join(rising_perm))
# falling tones
for falling_perm in self.falling_perms:
phones = phones.replace(falling_perm, "⭨".join(falling_perm))
if self.add_silence_to_end:
phones += "~" # adding a silence in the end during inference produces more natural sounding prosody
if include_eos_symbol:
phones += "#"
if not self.use_word_boundaries:
phones = phones.replace(" ", "")
if for_plot_labels:
phones = phones.replace(" ", "|")
phones = "~" + phones
phones = re.sub("~+", "~", phones)
return phones
def text_vectors_to_id_sequence(self, text_vector):
tokens = list()
for vector in text_vector:
if vector[get_feature_to_index_lookup()["word-boundary"]] == 0:
# we don't include word boundaries when performing alignment, since they are not always present in audio.
features = vector.cpu().numpy().tolist()
immutable_vector = tuple(features)
if immutable_vector in self.text_vector_to_phone_cache:
tokens.append(self.phone_to_id[self.text_vector_to_phone_cache[immutable_vector]])
continue
features = features[13:]
# the first 12 dimensions are for modifiers, so we ignore those when trying to find the phoneme in the ID lookup
for index in range(len(features)):
if features[index] == 2:
# we remove all features that stem from a modifier, so we can map back to the unmodified sound
features[index] = 0
for phone in self.phone_to_vector:
if features == self.phone_to_vector[phone][13:]:
tokens.append(self.phone_to_id[phone])
self.text_vector_to_phone_cache[immutable_vector] = phone
# this is terribly inefficient, but it's fine, since we're building a cache over time that makes this instant
break
return tokens
def english_text_expansion(text):
"""
Apply as small part of the tacotron style text cleaning pipeline, suitable for e.g. LJSpeech.
See https://github.com/keithito/tacotron/
Careful: Only apply to english datasets. Different languages need different cleaners.
"""
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in
[('Mrs.', 'misess'), ('Mr.', 'mister'), ('Dr.', 'doctor'), ('St.', 'saint'), ('Co.', 'company'), ('Jr.', 'junior'), ('Maj.', 'major'),
('Gen.', 'general'), ('Drs.', 'doctors'), ('Rev.', 'reverend'), ('Lt.', 'lieutenant'), ('Hon.', 'honorable'), ('Sgt.', 'sergeant'),
('Capt.', 'captain'), ('Esq.', 'esquire'), ('Ltd.', 'limited'), ('Col.', 'colonel'), ('Ft.', 'fort'), ('e.g.', ', for example, '), ('TTS', 'text to speech')]]
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def chinese_number_conversion(text):
# https://gist.github.com/gumblex/0d65cad2ba607fd14de7?permalink_comment_id=4063512#gistcomment-4063512
import bisect
zhdigits = '零一二三四五六七八九'
zhplaces = {
0: '',
1: '十',
2: '百',
3: '千',
4: '万',
8: '亿',
}
zhplace_keys = sorted(zhplaces.keys())
def numdigits(n):
return len(str(abs(n)))
def _zhnum(n):
if n < 10:
return zhdigits[n]
named_place_len = zhplace_keys[bisect.bisect_right(zhplace_keys,
numdigits(n) - 1) - 1]
left_part, right_part = n // 10 ** named_place_len, n % 10 ** named_place_len
return (_zhnum(left_part) +
zhplaces[named_place_len] +
((zhdigits[0] if numdigits(right_part) != named_place_len else '') +
_zhnum(right_part)
if right_part else ''))
def zhnum(n):
answer = ('负' if n < 0 else '') + _zhnum(abs(n))
answer = re.sub(r'^一十', '十', answer)
answer = re.sub(r'(?<![零十])二(?=[千万亿])', r'两', answer)
return answer
return re.sub(r'\d+', lambda x: zhnum(int(x.group())), text)
def remove_french_spacing(text):
text = text.replace(" »", '"').replace("« ", '"')
for punc in ["!", ";", ":", ".", ",", "?", "-"]:
text = text.replace(f" {punc}", punc)
return text
def convert_kanji_to_pinyin_mandarin(text):
text = chinese_number_conversion(text)
return " ".join([x[0] for x in pinyin(text)])
def get_language_id(language):
try:
iso_codes_to_ids = load_json_from_path("Preprocessing/multilinguality/iso_lookup.json")[-1]
except FileNotFoundError:
try:
iso_codes_to_ids = load_json_from_path(str(Path(__file__).parent / "multilinguality/iso_lookup.json"))[-1]
except FileNotFoundError:
iso_codes_to_ids = load_json_from_path("iso_lookup.json")[-1]
if language not in iso_codes_to_ids:
print("Please specify the language as ISO 639-3 code (https://en.wikipedia.org/wiki/List_of_ISO_639-3_codes)")
return None
return torch.LongTensor([iso_codes_to_ids[language]])
if __name__ == '__main__':
print("\n\nEnglish Test")
tf = ArticulatoryCombinedTextFrontend(language="eng")
tf.string_to_tensor("This is a complex sentence, it even has a pause! But can it do this? Nice.", view=True)
print("\n\nChinese Test")
tf = ArticulatoryCombinedTextFrontend(language="cmn")
tf.string_to_tensor("这是一个复杂的句子,19423 它甚至包含一个停顿。", view=True)
tf.string_to_tensor("李绅 《悯农》 锄禾日当午, 汗滴禾下土。 谁知盘中餐, 粒粒皆辛苦。", view=True)
tf.string_to_tensor("巴 拔 把 爸 吧", view=True)
print("\n\nVietnamese Test")
tf = ArticulatoryCombinedTextFrontend(language="vie")
tf.string_to_tensor("Xin chào thế giới, quả là một ngày tốt lành để học nói tiếng Việt!", view=True)
tf.string_to_tensor("ba bà bá bạ bả bã", view=True)
print("\n\nJapanese Test")
tf = ArticulatoryCombinedTextFrontend(language="jpn")
tf.string_to_tensor("医師会がなくても、近隣の病院なら紹介してくれると思います。", view=True)
print(tf.get_phone_string("医師会がなくても、近隣の病院なら紹介してくれると思います。"))
print("\n\nZero-Shot Test")
tf = ArticulatoryCombinedTextFrontend(language="acr")
tf.string_to_tensor("I don't know this language, but this is just a dummy text anyway.", view=True)
print(tf.get_phone_string("I don't know this language, but this is just a dummy text anyway."))
|