MassivelyMultilingualTTS / Preprocessing /multilinguality /eval_lang_emb_approximation.py
Flux9665's picture
update to the current version
70399da
raw
history blame
7.53 kB
import argparse
import os
import matplotlib
import numpy as np
import pandas as pd
import torch
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
matplotlib.rcParams['font.size'] = 7
import matplotlib.pyplot as plt
from Utility.utils import load_json_from_path
from Utility.storage_config import MODELS_DIR
def compute_loss_for_approximated_embeddings(csv_path, iso_lookup, language_embeddings, weighted_avg=False, min_n_langs=5, max_n_langs=30, threshold_percentile=95, loss_fn="MSE"):
df = pd.read_csv(csv_path, sep="|")
if loss_fn == "L1":
loss_fn = torch.nn.L1Loss()
else:
loss_fn = torch.nn.MSELoss()
features_per_closest_lang = 2
# for combined, df has up to 5 features (if containing individual distances) per closest lang + 1 target lang column
if "combined_dist_0" in df.columns:
if "map_dist_0" in df.columns:
features_per_closest_lang += 1
if "asp_dist_0" in df.columns:
features_per_closest_lang += 1
if "tree_dist_0" in df.columns:
features_per_closest_lang += 1
n_closest = len(df.columns) // features_per_closest_lang
distance_type = "combined"
# else, df has 2 features per closest lang + 1 target lang column
else:
n_closest = len(df.columns) // features_per_closest_lang
if "map_dist_0" in df.columns:
distance_type = "map"
elif "tree_dist_0" in df.columns:
distance_type = "tree"
elif "asp_dist_0" in df.columns:
distance_type = "asp"
elif "learned_dist_0" in df.columns:
distance_type = "learned"
elif "oracle_dist_0" in df.columns:
distance_type = "oracle"
else:
distance_type = "random"
closest_lang_columns = [f"closest_lang_{i}" for i in range(n_closest)]
closest_dist_columns = [f"{distance_type}_dist_{i}" for i in range(n_closest)]
closest_lang_columns = closest_lang_columns[:max_n_langs]
closest_dist_columns = closest_dist_columns[:max_n_langs]
threshold = np.percentile(df[closest_dist_columns[-1]], threshold_percentile)
print(f"threshold: {threshold}")
all_losses = []
for row in df.itertuples():
try:
y = language_embeddings[iso_lookup[-1][row.target_lang]]
except KeyError:
print(f"KeyError: Unable to retrieve language embedding for {row.target_lang}")
continue
avg_emb = torch.zeros([16])
dists = [getattr(row, d) for i, d in enumerate(closest_dist_columns) if i < min_n_langs or getattr(row, d) < threshold]
langs = [getattr(row, l) for l in closest_lang_columns[:len(dists)]]
if weighted_avg:
for lang, dist in zip(langs, dists):
lang_emb = language_embeddings[iso_lookup[-1][lang]]
avg_emb += lang_emb * dist
normalization_factor = sum(dists)
else:
for lang in langs:
lang_emb = language_embeddings[iso_lookup[-1][lang]]
avg_emb += lang_emb
normalization_factor = len(langs)
avg_emb /= normalization_factor # normalize
current_loss = loss_fn(avg_emb, y).item()
all_losses.append(current_loss)
return all_losses
if __name__ == "__main__":
default_model_path = os.path.join("../..", MODELS_DIR, "ToucanTTS_Meta", "best.pt") # MODELS_DIR must be absolute path, the relative path will fail at this location
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=default_model_path, help="model path that should be used for creating oracle lang emb distance cache")
parser.add_argument("--min_n_langs", type=int, default=5, help="minimum amount of languages used for averaging")
parser.add_argument("--max_n_langs", type=int, default=30, help="maximum amount of languages used for averaging")
parser.add_argument("--threshold_percentile", type=int, default=95, help="percentile of the furthest used languages \
used as cutoff threshold (no langs >= the threshold are used for averagin)")
parser.add_argument("--loss_fn", choices=["MSE", "L1"], type=str, default="MSE", help="loss function used")
args = parser.parse_args()
csv_paths = [
"distance_datasets/dataset_map_top30_furthest.csv",
"distance_datasets/dataset_random_top30.csv",
"distance_datasets/dataset_asp_top30.csv",
"distance_datasets/dataset_tree_top30.csv",
"distance_datasets/dataset_map_top30.csv",
"distance_datasets/dataset_combined_top30_indiv-dists.csv",
"distance_datasets/dataset_learned_top30.csv",
"distance_datasets/dataset_oracle_top30.csv",
]
weighted = [False]
lang_embs = torch.load(args.model_path)["model"]["encoder.language_embedding.weight"]
lang_embs.requires_grad_(False)
iso_lookup = load_json_from_path("iso_lookup.json")
losses_of_multiple_datasets = []
OUT_DIR = "plots"
os.makedirs(OUT_DIR, exist_ok=True)
fig, ax = plt.subplots(figsize=(3.15022, 3.15022*(2/3)), constrained_layout=True)
plt.ylabel(args.loss_fn)
for i, csv_path in enumerate(csv_paths):
print(f"csv_path: {os.path.basename(csv_path)}")
for condition in weighted:
losses = compute_loss_for_approximated_embeddings(csv_path,
iso_lookup,
lang_embs,
condition,
min_n_langs=args.min_n_langs,
max_n_langs=args.max_n_langs,
threshold_percentile=args.threshold_percentile,
loss_fn=args.loss_fn)
print(f"weighted average: {condition} | mean loss: {np.mean(losses)}")
losses_of_multiple_datasets.append(losses)
bp_dict = ax.boxplot(losses_of_multiple_datasets,
labels = [
"map furthest",
"random",
"inv. ASP",
"tree",
"map",
"avg",
"meta-learned",
"oracle",
],
patch_artist=True,
boxprops=dict(facecolor = "lightblue",
),
showfliers=False,
widths=0.45
)
# major ticks every 0.1, minor ticks every 0.05, between 0.0 and 0.6
major_ticks = np.arange(0, 0.6, 0.1)
minor_ticks = np.arange(0, 0.6, 0.05)
ax.set_yticks(major_ticks)
ax.set_yticks(minor_ticks, minor=True)
# horizontal grid lines for minor and major ticks
ax.grid(which='both', linestyle='-', color='lightgray', linewidth=0.3, axis='y')
ax.set_aspect(4.5)
plt.title(f"min. {args.min_n_langs} kNN, max. {args.max_n_langs}\nthreshold: {args.threshold_percentile}th-percentile distance of {args.max_n_langs}th-closest language")
plt.xticks(rotation=45)
plt.savefig(os.path.join(OUT_DIR, "example_boxplot_release.pdf"), bbox_inches='tight')