import gradio as gr
import torch.cuda
from huggingface_hub import hf_hub_download
from InferenceInterfaces.ControllableInterface import ControllableInterface
from Utility.utils import float2pcm
from Utility.utils import load_json_from_path
class TTSWebUI:
def __init__(self,
gpu_id="cpu",
title="Controllable Text-to-Speech for over 7000 Languages",
article="The biggest thank you to Hugging Face🤗 for sponsoring the GPU for this space!
To get the code, models, additional features, and more information, check out our toolkit: https://github.com/DigitalPhonetics/IMS-Toucan
",
tts_model_path=None,
vocoder_model_path=None,
embedding_gan_path=None,
available_artificial_voices=50 # be careful with this, if you want too many, it might lead to an endless loop
):
path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_fullname.json")
iso_to_name = load_json_from_path(path_to_iso_list)
text_selection = [f"{iso_to_name[iso_code]} ({iso_code})" for iso_code in iso_to_name]
# accent_selection = [f"{iso_to_name[iso_code]} Accent ({iso_code})" for iso_code in iso_to_name]
if tts_model_path is None:
tts_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="ToucanTTS.pt")
if vocoder_model_path is None:
vocoder_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="Vocoder.pt")
if embedding_gan_path is None:
embedding_gan_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="embedding_gan.pt")
self.controllable_ui = ControllableInterface(gpu_id=gpu_id,
available_artificial_voices=available_artificial_voices,
tts_model_path=tts_model_path,
vocoder_model_path=vocoder_model_path,
embedding_gan_path=embedding_gan_path)
self.iface = gr.Interface(fn=self.read,
inputs=[gr.Textbox(lines=2,
placeholder="write what you want the synthesis to read here...",
value="What I cannot create, I do not understand.",
label="Text input"),
gr.Dropdown(text_selection,
type="value",
value='English (eng)',
label="Select the Language of the Text (type on your keyboard to find it quickly)"),
gr.Slider(minimum=0.0, maximum=0.8, step=0.1, value=0.5, label="Prosody Creativity"),
gr.Slider(minimum=0.7, maximum=1.3, step=0.1, value=1.0, label="Faster - Slower"),
gr.Slider(minimum=0, maximum=available_artificial_voices, step=1, value=27, label="Random Seed for the artificial Voice"),
gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Gender of artificial Voice"),
gr.Audio(type="filepath", show_label=True, container=True, label="[OPTIONAL] Voice to Clone (if left empty, will use an artificial voice instead)"),
# gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"),
# gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"),
# gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth")
],
outputs=[gr.Audio(type="numpy", label="Speech"),
gr.Image(label="Visualization")],
title=title,
allow_flagging="never",
description=article,
theme=gr.themes.Ocean(primary_hue="amber", secondary_hue="orange"))
self.iface.launch()
def read(self,
prompt,
language,
prosody_creativity,
duration_scaling_factor,
voice_seed,
emb1,
reference_audio,
# pitch_variance_scale,
# energy_variance_scale,
# emb2
):
sr, wav, fig = self.controllable_ui.read(prompt,
reference_audio,
language.split(" ")[-1].split("(")[1].split(")")[0],
language.split(" ")[-1].split("(")[1].split(")")[0],
voice_seed,
prosody_creativity,
duration_scaling_factor,
1.,
1.0,
1.0,
emb1,
0.,
0.,
0.,
0.,
0.,
-24.)
return (sr, float2pcm(wav)), fig
if __name__ == '__main__':
TTSWebUI(gpu_id="cuda" if torch.cuda.is_available() else "cpu")