import gradio as gr import torch.cuda from huggingface_hub import hf_hub_download from InferenceInterfaces.ControllableInterface import ControllableInterface from Utility.utils import float2pcm from Utility.utils import load_json_from_path class TTSWebUI: def __init__(self, gpu_id="cpu", title="Controllable Text-to-Speech for over 7000 Languages", article="The biggest thank you to Hugging Face🤗 for sponsoring the GPU for this space!
To get the code, models, additional features, and more information, check out our toolkit: https://github.com/DigitalPhonetics/IMS-Toucan
", tts_model_path=None, vocoder_model_path=None, embedding_gan_path=None, available_artificial_voices=50 # be careful with this, if you want too many, it might lead to an endless loop ): path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_fullname.json") iso_to_name = load_json_from_path(path_to_iso_list) text_selection = [f"{iso_to_name[iso_code]} ({iso_code})" for iso_code in iso_to_name] # accent_selection = [f"{iso_to_name[iso_code]} Accent ({iso_code})" for iso_code in iso_to_name] if tts_model_path is None: tts_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="ToucanTTS.pt") if vocoder_model_path is None: vocoder_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="Vocoder.pt") if embedding_gan_path is None: embedding_gan_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="embedding_gan.pt") self.controllable_ui = ControllableInterface(gpu_id=gpu_id, available_artificial_voices=available_artificial_voices, tts_model_path=tts_model_path, vocoder_model_path=vocoder_model_path, embedding_gan_path=embedding_gan_path) self.iface = gr.Interface(fn=self.read, inputs=[gr.Textbox(lines=2, placeholder="write what you want the synthesis to read here...", value="What I cannot create, I do not understand.", label="Text input"), gr.Dropdown(text_selection, type="value", value='English (eng)', label="Select the Language of the Text (type on your keyboard to find it quickly)"), gr.Slider(minimum=0.0, maximum=0.8, step=0.1, value=0.5, label="Prosody Creativity"), gr.Slider(minimum=0.7, maximum=1.3, step=0.1, value=1.0, label="Faster - Slower"), gr.Slider(minimum=0, maximum=available_artificial_voices, step=1, value=27, label="Random Seed for the artificial Voice"), gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Gender of artificial Voice"), gr.Audio(type="filepath", show_label=True, container=True, label="[OPTIONAL] Voice to Clone (if left empty, will use an artificial voice instead)"), # gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"), # gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"), # gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth") ], outputs=[gr.Audio(type="numpy", label="Speech"), gr.Image(label="Visualization")], title=title, allow_flagging="never", description=article, theme=gr.themes.Ocean(primary_hue="amber", secondary_hue="orange")) self.iface.launch() def read(self, prompt, language, prosody_creativity, duration_scaling_factor, voice_seed, emb1, reference_audio, # pitch_variance_scale, # energy_variance_scale, # emb2 ): sr, wav, fig = self.controllable_ui.read(prompt, reference_audio, language.split(" ")[-1].split("(")[1].split(")")[0], language.split(" ")[-1].split("(")[1].split(")")[0], voice_seed, prosody_creativity, duration_scaling_factor, 1., 1.0, 1.0, emb1, 0., 0., 0., 0., 0., -24.) return (sr, float2pcm(wav)), fig if __name__ == '__main__': TTSWebUI(gpu_id="cuda" if torch.cuda.is_available() else "cpu")