FoodDesert commited on
Commit
5a1477b
1 Parent(s): f48183d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +750 -686
app.py CHANGED
@@ -1,686 +1,750 @@
1
- import gradio as gr
2
- from sklearn.metrics.pairwise import cosine_similarity
3
- from scipy.sparse import csr_matrix
4
- import numpy as np
5
- import joblib
6
- from joblib import load
7
- import h5py
8
- from io import BytesIO
9
- import csv
10
- import re
11
- import random
12
- import compress_fasttext
13
- from collections import OrderedDict
14
- from lark import Lark, Tree, Token
15
- from lark.exceptions import ParseError
16
- import json
17
- import zipfile
18
- from PIL import Image
19
- import io
20
- import os
21
- import glob
22
- import itertools
23
- from itertools import islice
24
- from pathlib import Path
25
- import logging
26
-
27
- # Set up logging
28
- logging.basicConfig(filename='error.log', level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s')
29
-
30
-
31
- faq_content="""
32
- #4-20-2024 Why aren't there example images for most artists?
33
-
34
- We recently updated the underlying data used to calculate the Suggested Artists section.
35
- We have not yet generated example images for all the new artists.
36
-
37
- # Questions:
38
-
39
- ## What is the purpose of this tool?
40
-
41
- Since Stable Diffusion's initial release in 2022, users have developed a myriad of fine-tuned text to image models, each with unique "linguistic" preferences depending on the data from which it was fine-tuned.
42
- Some models react best when prompted with verbose scene descriptions akin to DALL-E, while others fine-tuned on images scraped from popular image boards understand those boards' tag sets.
43
- This tool serves as a linguistic bridge to the e621 image board tag lexicon, on which many popular models such as Fluffyrock, Fluffusion, and Pony Diffusion v6 were trained.
44
-
45
- When you enter a txt2img prompt and press the "submit" button, Prompt Squirrel parses your prompt and checks that all your tags are valid e621 tags.
46
- If it finds any that are not, it recommends some valid e621 tags you can use to replace them in the "Unknown Tags" section.
47
- Additionally, in the "Top Artists" text box, it lists the artists who would most likely draw an image having the set of tags you provided.
48
- This is useful to align your prompt with the expected input to an e621-trained model.
49
-
50
- ## Does input order matter?
51
-
52
- No
53
-
54
- ## Should I use underscores or spaces in the input tags?
55
-
56
- As a rule, e621-trained models replace underscores in tags with spaces, so spaces are preferred.
57
-
58
- ## Can I use parentheses or weights as in the Stable Diffusion Automatic1111 WebUI?
59
-
60
- Yes, but only '(' and ')' and numerical weights, and all of these things are ignored in all calculations. The main benefit of this is that you can copy/paste prompts from one program to another with minimal editing.
61
- An example that illustrates acceptable parentheses and weight formatting is:
62
- ((sunset over the mountains)), (clear sky:1.5), ((eagle flying high:2.0)), river, (fish swimming in the river:1.2), (campfire, (marshmallows:2.1):1.3), stars in the sky, ((full moon:1.8)), (wolf howling:1.7)
63
-
64
- ## Why are some valid tags marked as "unknown", and why don't some artists ever get returned?
65
-
66
- Some data is excluded from consideration if it did not occur frequently enough in the sample from which the application makes its calculations.
67
- If an artist or tag is too infrequent, we might not think we have enough data to make predictions about it.
68
-
69
- ## Why do some suggested tags not have summaries or wiki links?
70
-
71
- Both of these features are extracted from the tag wiki pages, but some valid e621 tags do not have wiki pages.
72
-
73
- ## Are there any special tags?
74
-
75
- Yes. We normalized the favorite counts of each image to a range of 0-9, with 0 being the lowest favcount, and 9 being the highest.
76
- You can include any of these special tags: "score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9"
77
- in your list to bias the output toward artists with higher or lower scoring images.
78
-
79
- ## Are there any other special tricks?
80
-
81
- Yes. If you want to more strongly bias the artist output toward a specific tag, you can just list it multiple times.
82
- So for example, the query "red fox, red fox, red fox, score:7" will yield a list of artists who are more strongly associated with the tag "red fox"
83
- than the query "red fox, score:7".
84
-
85
- ## Why is this space tagged "not-for-all-audience"
86
- The "not-for-all-audience" tag informs users that this tool's text output is derived from e621.net data for tag prediction and completion.
87
- The app will try not to display nsfw tags unless the "Allow NSFW Tags" is checked, but the filter is not perfect.
88
-
89
- ## How does the tag corrector work?
90
-
91
- We collect the tag sets from over 4 million e621 posts, treating the tag set from each image as an individual document.
92
- We then randomly replace about 10% of the tags in each document with a randomly selected alias from e621's list of aliases for the tag
93
- (e.g. "canine" gets replaced with one of {k9,canines,mongrel,cannine,cnaine,feral_canine,anthro_canine}).
94
- We then train a FastText (https://fasttext.cc/) model on the documents. The result of this training is a function that maps arbitrary words to vectors such that
95
- the vector for a tag and the vectors for its aliases are all close together (because the model has seen them in similar contexts).
96
- Since the lists of aliases contain misspellings and rephrasings of tags, the model should be robust to these kinds of problems as long as they are not too dissimilar from the alias lists.
97
-
98
- To enhance the tag corrector further, we leverage conditional probabilities to refine our predictions.
99
- Using the same 4 million post dataset, we calculate the conditional probability of each tag given the context of other tags appearing within the same document.
100
- This is done by creating a co-occurrence matrix from our dataset, which records how frequently each pair of tags appears together across all documents.
101
- By considering the context in which tags are used, we can now not only correct misspellings and rephrasings but also make more contextually relevant suggestions.
102
- The "similarity weight" slider controls how much weight these conditional probabilities are given vs how much weight the FastText similarity model is given when suggesting replacements for invalid tags.
103
- A similarity weight slider value of 0 means that only the FastText model's predictions will be used to calculate similarity scores, and a value of 1 means only the conditional probabilities are used (although the FastText model is still used to trim the list of candidates).
104
-
105
- ## How is the artist list calculated?
106
-
107
- Each artist is represented by a "pseudo-document" composed of all the tags from their uploaded images, treating these tags similarly to words in a text document.
108
- Similarly, when you input a set of tags, the system creates a pseudo-document for your query out of all the tags.
109
- It then uses a technique called cosine similarity to compare your tags against each artist's collection, essentially finding which artist's tags are most "similar" to yours.
110
- This method helps identify artists whose work is closely aligned with the themes or elements you're interested in.
111
- For those curious about the underlying mechanics of comparing text-like data, we employ the TF-IDF (Term Frequency-Inverse Document Frequency) method, a standard approach in information retrieval.
112
- You can read more about TF-IDF on its [Wikipedia page](https://en.wikipedia.org/wiki/Tf%E2%80%93idf).
113
-
114
- ## How do the sample images work?
115
-
116
- In the first row of galleries, for each artist in the dataset, we generated a sample image with the model Fluffyrock Unleashed using the prompt "by artist, soyjak, anthro, male, bust portrait, meme, grin" where "artist" is the name of an artist.
117
- The simplicity of the prompt, the the simplicty of the default style, and the recognizability of the character make it easier to understand how artist names affect generated image styles.
118
- The image on the left captioned "No Artist" was generated with the same prompt, but with no artist name.
119
- You should compare all the images to the first to see how the artist names affect the output.
120
- Each subsequent row of images was generated using the same process, but with a different prompt.
121
- See SamplePrompts.csv for the list of prompts used and their descriptions.
122
- """
123
-
124
-
125
- nsfw_threshold = 0.95 # Assuming the threshold value is defined here
126
-
127
- css = """
128
- .scrollable-content {
129
- max-height: 500px;
130
- overflow-y: auto;
131
- }
132
- """
133
-
134
- grammar=r"""
135
- !start: (prompt | /[][():]/+)*
136
- prompt: (emphasized | plain | comma | WHITESPACE)*
137
- !emphasized: "(" prompt ")"
138
- | "(" prompt ":" [WHITESPACE] NUMBER [WHITESPACE] ")"
139
- comma: ","
140
- WHITESPACE: /\s+/
141
- plain: /([^,\\\[\]():|]|\\.)+/
142
- %import common.SIGNED_NUMBER -> NUMBER
143
- """
144
-
145
- # Initialize the parser
146
- parser = Lark(grammar, start='start')
147
-
148
- # Function to extract tags
149
- def extract_tags(tree):
150
- tags_with_positions = []
151
- def _traverse(node):
152
- if isinstance(node, Token) and node.type == '__ANON_1':
153
- tag_position = node.start_pos
154
- tag_text = node.value
155
- tags_with_positions.append((tag_text, tag_position, "tag"))
156
- elif not isinstance(node, Token):
157
- for child in node.children:
158
- _traverse(child)
159
- _traverse(tree)
160
- return tags_with_positions
161
-
162
-
163
- special_tags = ["score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9", "rating:s", "rating:q", "rating:e"]
164
- def remove_special_tags(original_string):
165
- tags = [tag.strip() for tag in original_string.split(",")]
166
- remaining_tags = [tag for tag in tags if tag not in special_tags]
167
- removed_tags = [tag for tag in tags if tag in special_tags]
168
- return ", ".join(remaining_tags), removed_tags
169
-
170
-
171
- # Define a function to load all necessary components
172
- def load_model_components(file_path):
173
- # Ensure the file path is a Path object for robust path handling
174
- file_path = Path(file_path)
175
-
176
- # Check if the file exists
177
- if not file_path.is_file():
178
- raise FileNotFoundError(f"The specified joblib file was not found: {file_path}")
179
-
180
- # Load all the model components from the joblib file
181
- model_components = joblib.load(file_path)
182
-
183
- # Create a reverse mapping from row index to tag
184
- if 'tag_to_row_index' in model_components:
185
- model_components['row_to_tag'] = {idx: tag for tag, idx in model_components['tag_to_row_index'].items()}
186
-
187
- return model_components
188
-
189
- # Load all components at the start
190
- tf_idf_components = load_model_components('tf_idf_files_420.joblib')
191
-
192
-
193
- nsfw_tags = set() # Initialize an empty set to store words meeting the threshold
194
- # Open and read the CSV file
195
- with open("word_rating_probabilities.csv", 'r', newline='', encoding='utf-8') as csvfile:
196
- reader = csv.reader(csvfile)
197
- next(reader, None) # Skip the header row
198
- for row in reader:
199
- word = row[0] # The word is in the first column
200
- probability_sum = float(row[1]) # The sum of probabilities is in the second column, convert to float for comparison
201
- # Check if the probability sum meets the threshold and add the word to the set if it does
202
- if probability_sum >= nsfw_threshold:
203
- nsfw_tags.add(word)
204
-
205
-
206
- # Read the set of valid artists into memory.
207
- artist_set = set()
208
- with open("fluffyrock_3m.csv", 'r', newline='', encoding='utf-8') as csvfile:
209
- """
210
- Load artist names from a CSV file and store them in the global set.
211
- Artist tags start with 'by_' and the prefix will be removed.
212
- """
213
- reader = csv.reader(csvfile)
214
- for row in reader:
215
- tag_name = row[0] # Assuming the first column contains the tag names
216
- if tag_name.startswith('by_'):
217
- # Strip 'by_' from the start of the tag name and add to the set
218
- artist_name = tag_name[3:] # Remove the first three characters 'by_'
219
- artist_set.add(artist_name)
220
- def is_artist(name):
221
- return name in artist_set
222
-
223
-
224
- sample_images_directory_path = 'sampleimages'
225
- def generate_artist_image_tuples(top_artists, image_directory):
226
- json_files = glob.glob(f'{image_directory}/*.json')
227
- json_file_path = json_files[0] if json_files else None
228
- with open(json_file_path, 'r') as json_file:
229
- artist_to_file_map = json.load(json_file)
230
-
231
- filename = artist_to_file_map.get("")
232
- image_path = os.path.join(image_directory, filename)
233
- if os.path.exists(image_path):
234
- baseline_tuple = [(image_path, "No Artist")]
235
-
236
- artist_image_tuples = []
237
- for artist in top_artists:
238
- filename = artist_to_file_map.get(artist)
239
- if filename:
240
- image_path = os.path.join(image_directory, filename)
241
- if os.path.exists(image_path):
242
- artist_image_tuples.append((image_path, artist if artist else "No Artist"))
243
-
244
- return baseline_tuple, artist_image_tuples
245
-
246
-
247
- def clean_tag(tag):
248
- return ''.join(char for char in tag if ord(char) < 128)
249
-
250
-
251
- #Normally returns tag to aliases, but when reverse=True, returns alias to tags
252
- def build_aliases_dict(filename, reverse=False):
253
- aliases_dict = {}
254
- with open(filename, 'r', newline='', encoding='utf-8') as csvfile:
255
- reader = csv.reader(csvfile)
256
- for row in reader:
257
- tag = clean_tag(row[0])
258
- alias_list = [] if row[3] == "null" else [clean_tag(alias) for alias in row[3].split(',')]
259
- if reverse:
260
- for alias in alias_list:
261
- aliases_dict.setdefault(alias, []).append(tag)
262
- else:
263
- aliases_dict[tag] = alias_list
264
- return aliases_dict
265
-
266
-
267
- def build_tag_count_dict(filename):
268
- with open(filename, 'r', newline='', encoding='utf-8') as csvfile:
269
- reader = csv.reader(csvfile)
270
- result_dict = {}
271
- for row in reader:
272
- key = row[0]
273
- value = int(row[2]) if row[2].isdigit() else None
274
- if value is not None:
275
- result_dict[key] = value
276
- return result_dict
277
-
278
- import csv
279
-
280
-
281
- def build_tag_id_wiki_dict(filename='wiki_pages-2023-08-08.csv'):
282
- """
283
- Reads a CSV file and returns a dictionary mapping tag names to tuples of
284
- (number, most relevant line from the wiki entry). Rows with a non-integer in the first column are ignored.
285
- The most relevant line is the first line that does not start with "thumb" and is not blank.
286
-
287
- Parameters:
288
- - filename: The path to the CSV file.
289
-
290
- Returns:
291
- - A dictionary where each key is a tag name and each value is a tuple (number, most relevant wiki entry line).
292
- """
293
- tag_data = {}
294
- with open(filename, 'r', encoding='utf-8') as csvfile:
295
- reader = csv.reader(csvfile)
296
-
297
- # Skip the header row
298
- next(reader)
299
-
300
- for row in reader:
301
- try:
302
- # Attempt to convert the first column to an integer
303
- number = int(row[0])
304
- except ValueError:
305
- # If conversion fails, skip this row
306
- continue
307
-
308
- tag = row[3]
309
- wiki_entry_full = row[4]
310
-
311
- # Process the wiki_entry to find the most relevant line
312
- relevant_line = ''
313
- for line in wiki_entry_full.split('\n'):
314
- if line.strip() and not line.startswith("thumb"):
315
- relevant_line = line
316
- break
317
-
318
- # Map the tag to a tuple of (number, relevant_line)
319
- tag_data[tag] = (number, relevant_line)
320
-
321
- return tag_data
322
-
323
-
324
- def create_html_tables_for_tags(subtable_heading, word_similarity_tuples, tag2count, tag2idwiki):
325
- # Wrap the tag part in a <span> with styles for bold and larger font
326
- html_str = f"<div style='display: inline-block; margin: 20px; vertical-align: top;'><table><thead><tr><th colspan='3' style='text-align: center; padding-bottom: 10px;'><span style='font-weight: bold; font-size: 20px;'>{subtable_heading}</span></th></tr></thead><tbody><tr style='border-bottom: 1px solid #000;'><th>Corrected Tag</th><th>Similarity</th><th>Count</th></tr>"
327
- # Loop through the results and add table rows for each
328
- for word, sim in word_similarity_tuples:
329
- word_with_underscores = word.replace(' ', '_')
330
- word_with_escaped_parentheses = word.replace("\\(", "(").replace("\\)", ")").replace("(", "\\(").replace(")", "\\)")
331
- count = tag2count.get(word_with_underscores.replace("\\(", "(").replace("\\)", ")"), 0) # Get the count if available, otherwise default to 0
332
- tag_id, wiki_entry = tag2idwiki.get(word_with_underscores, (None, ''))
333
- # Check if tag_id and wiki_entry are valid
334
- if tag_id is not None and wiki_entry:
335
- # Construct the URL for the tag's wiki page
336
- wiki_url = f"https://e621.net/wiki_pages/{tag_id}"
337
- # Make the tag a hyperlink with a tooltip
338
- tag_element = f"<a href='{wiki_url}' target='_blank' title='{wiki_entry}'>{word_with_escaped_parentheses}</a>"
339
- else:
340
- # Display the word without any hyperlink or tooltip
341
- tag_element = word_with_escaped_parentheses
342
- # Include the tag element in the table row
343
- html_str += f"<tr><td style='border: none; padding: 5px; height: 20px;'>{tag_element}</td><td style='border: none; padding: 5px; height: 20px;'>{round(sim, 3)}</td><td style='border: none; padding: 5px; height: 20px;'>{count}</td></tr>"
344
-
345
- html_str += "</tbody></table></div>"
346
- return html_str
347
-
348
-
349
- def create_top_artists_table(top_artists):
350
- # Add a heading above the table
351
- html_str = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
352
- html_str += "<h1>Top Artists</h1>" # Heading for the table
353
- # Start the table with increased font size and no borders between rows
354
- html_str += "<table style='font-size: 20px; border-collapse: collapse;'>"
355
- html_str += "<thead><tr><th>Artist</th><th>Similarity</th></tr></thead><tbody>"
356
- # Loop through the top artists and add a row for each without the rank and without borders between rows
357
- for artist, score in top_artists:
358
- artist_name = artist[3:] if artist.startswith("by ") else artist # Remove "by " prefix
359
- similarity_percentage = "{:.1f}%".format(score * 100) # Convert score to percentage string with one decimal
360
- html_str += f"<td style='padding: 3px 20px; border: none;'>{artist_name}</td><td style='padding: 3px 20px; border: none;'>{similarity_percentage}</td></tr>"
361
-
362
- # Close the table HTML
363
- html_str += "</tbody></table></div>"
364
-
365
- return html_str
366
-
367
-
368
- def construct_pseudo_vector(pseudo_doc_terms, idf_loaded, tag_to_row_loaded):
369
- # Initialize a vector of zeros with the length of the term_to_index mapping
370
- pseudo_vector = np.zeros(len(tag_to_row_loaded))
371
-
372
- # Fill in the vector for terms in the pseudo document
373
- for term in pseudo_doc_terms:
374
- if term in tag_to_row_loaded:
375
- index = tag_to_row_loaded[term]
376
- pseudo_vector[index] = idf_loaded.get(term, 0)
377
-
378
- # Return the vector as a 2D array for compatibility with SVD transform
379
- return pseudo_vector.reshape(1, -1)
380
-
381
-
382
- def get_top_indices(reduced_pseudo_vector, reduced_matrix):
383
- # Compute cosine similarities
384
- similarities = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()
385
-
386
- # Get sorted tag indices based on similarities, in descending order
387
- sorted_indices = np.argsort(-similarities)
388
-
389
- # Return the top N indices
390
- return sorted_indices
391
-
392
-
393
- def get_tfidf_reduced_similar_tags(pseudo_doc_terms, allow_nsfw_tags):
394
- idf = tf_idf_components['idf']
395
- term_to_column_index = tf_idf_components['tag_to_column_index']
396
- row_to_tag = tf_idf_components['row_to_tag']
397
- reduced_matrix = tf_idf_components['reduced_matrix']
398
- svd = tf_idf_components['svd_model']
399
-
400
- # Construct the TF-IDF vector
401
- pseudo_tfidf_vector = construct_pseudo_vector(pseudo_doc_terms, idf, term_to_column_index)
402
-
403
- # Reduce the dimensionality of the pseudo-document vector for the reduced matrix
404
- reduced_pseudo_vector = svd.transform(pseudo_tfidf_vector)
405
-
406
- # Compute cosine similarities in the reduced space
407
- cosine_similarities_reduced = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()
408
-
409
- # Sort the indices by descending cosine similarity
410
- top_indices_reduced = np.argsort(cosine_similarities_reduced)
411
-
412
- # Map indices to tags with their similarities
413
- tag_similarity_dict = {row_to_tag[i]: cosine_similarities_reduced[i] for i in top_indices_reduced if i in row_to_tag}
414
-
415
- if not allow_nsfw_tags:
416
- tag_similarity_dict = {tag: sim for tag, sim in tag_similarity_dict.items() if tag not in nsfw_tags}
417
-
418
- tag_similarity_dict = {"by " + tag if is_artist(tag) else tag: sim for tag, sim in tag_similarity_dict.items()}
419
-
420
- # Sort and transform tag names
421
- sorted_tag_similarity_dict = OrderedDict(sorted(tag_similarity_dict.items(), key=lambda x: x[1], reverse=True))
422
- transformed_sorted_tag_similarity_dict = OrderedDict(
423
- (key.replace('_', ' ').replace('(', '\\(').replace(')', '\\)'), value)
424
- for key, value in sorted_tag_similarity_dict.items()
425
- )
426
-
427
- return transformed_sorted_tag_similarity_dict
428
-
429
-
430
- def create_html_placeholder(title="", content="", placeholder_height=400, placeholder_width="100%"):
431
- # Include a title in the same style as the top artists table heading
432
- html_placeholder = f"<div class=\"scrollable-content\" style='text-align: center;'><h1>{title}</h1></div>"
433
- # Conditionally add content if present
434
- if content:
435
- html_placeholder += f"<div style='text-align: center; margin-bottom: 20px;'><p>{content}</p></div>"
436
- # Add the placeholder div with specified height and width
437
- html_placeholder += f"<div style='height: {placeholder_height}px; width: {placeholder_width}; margin: 20px auto; background: transparent;'></div>"
438
- return html_placeholder
439
-
440
-
441
- def find_similar_tags(test_tags, tag_to_context_similarity, context_similarity_weight, allow_nsfw_tags):
442
- #Initialize stuff
443
- if not hasattr(find_similar_tags, "fasttext_small_model"):
444
- find_similar_tags.fasttext_small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load('e621FastTextModel010Replacement_small.bin')
445
- tag_aliases_file = 'fluffyrock_3m.csv'
446
- if not hasattr(find_similar_tags, "tag2aliases"):
447
- find_similar_tags.tag2aliases = build_aliases_dict(tag_aliases_file)
448
- if not hasattr(find_similar_tags, "alias2tags"):
449
- find_similar_tags.alias2tags = build_aliases_dict(tag_aliases_file, reverse=True)
450
- if not hasattr(find_similar_tags, "tag2count"):
451
- find_similar_tags.tag2count = build_tag_count_dict(tag_aliases_file)
452
- if not hasattr(find_similar_tags, "tag2idwiki"):
453
- find_similar_tags.tag2idwiki = build_tag_id_wiki_dict()
454
-
455
- modified_tags = [tag_info['modified_tag'] for tag_info in test_tags]
456
- transformed_tags = [tag.replace(' ', '_') for tag in modified_tags]
457
-
458
- # Find similar tags and prepare data for tables
459
- html_content = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
460
- html_content += "<h1>Unknown Tags</h1>" # Heading for the table
461
- tags_added = False
462
- bad_entities = []
463
- encountered_modified_tags = set()
464
- for tag_info in test_tags:
465
- original_tag = tag_info['original_tag']
466
- modified_tag = tag_info['modified_tag']
467
- start_pos = tag_info['start_pos']
468
- end_pos = tag_info['end_pos']
469
- node_type = tag_info['node_type']
470
-
471
- if modified_tag in special_tags:
472
- bad_entities.append({"entity":"Special", "start":start_pos, "end":end_pos})
473
- continue
474
-
475
- if modified_tag in encountered_modified_tags:
476
- bad_entities.append({"entity":"Duplicate", "start":start_pos, "end":end_pos})
477
- continue
478
- encountered_modified_tags.add(modified_tag)
479
-
480
- if node_type == "double_comma":
481
- bad_entities.append({"entity":"Double Comma", "start":start_pos, "end":end_pos})
482
- continue
483
-
484
- modified_tag_for_search = modified_tag.replace(' ','_')
485
- similar_words = find_similar_tags.fasttext_small_model.most_similar(modified_tag_for_search, topn = 100)
486
- result, seen = [], set(transformed_tags)
487
-
488
- if modified_tag_for_search in find_similar_tags.tag2aliases:
489
- if modified_tag in find_similar_tags.tag2aliases and "_" in modified_tag: #Implicitly tell the user that they should get rid of the underscore
490
- result.append(modified_tag_for_search.replace('_',' '), 1)
491
- seen.add(modified_tag)
492
- else: #The user correctly did not put underscores in their tag
493
- continue
494
- else:
495
- for item in similar_words:
496
- similar_word, similarity = item
497
- if similar_word not in seen:
498
- if similar_word in find_similar_tags.tag2aliases:
499
- result.append((similar_word.replace('_', ' '), round(similarity, 3)))
500
- seen.add(similar_word)
501
- else:
502
- for similar_tag in find_similar_tags.alias2tags.get(similar_word, []):
503
- if similar_tag not in seen:
504
- result.append((similar_tag.replace('_', ' '), round(similarity, 3)))
505
- seen.add(similar_tag)
506
-
507
- #Remove NSFW tags if appropriate.
508
- if not allow_nsfw_tags:
509
- result = [(word, score) for word, score in result if word.replace(' ','_') not in nsfw_tags]
510
-
511
- #Adjust score based on context
512
- for i in range(len(result)):
513
- word, score = result[i] # Unpack the tuple
514
- context_score = tag_to_context_similarity.get(word,0)
515
- result[i] = (word, .5 * ((context_similarity_weight * context_score) + ((1 - context_similarity_weight) * score)))
516
-
517
- result = sorted(result, key=lambda x: x[1], reverse=True)[:10]
518
- html_content += create_html_tables_for_tags(modified_tag, result, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
519
-
520
- bad_entities.append({"entity":"Unknown Tag", "start":start_pos, "end":end_pos})
521
-
522
- tags_added=True
523
- # If no tags were processed, add a message
524
- if not tags_added:
525
- html_content = create_html_placeholder(title="Unknown Tags", content="No Unknown Tags Found")
526
-
527
- return html_content, bad_entities # Return list of lists for Dataframe
528
-
529
-
530
- def build_tag_offsets_dicts(new_image_tags_with_positions):
531
- # Structure the data for HighlightedText
532
- tag_data = []
533
- for tag_text, start_pos, nodetype in new_image_tags_with_positions:
534
- # Modify the tag
535
- modified_tag = tag_text.replace('_', ' ').replace('\\(', '(').replace('\\)', ')').strip()
536
- artist_matrix_tag = tag_text.replace('_', ' ').replace('\\(', '\(').replace('\\)', '\)').strip()
537
- tf_idf_matrix_tag = re.sub(r'\\([()])', r'\1', re.sub(r' ', '_', tag_text.strip().removeprefix('by ').removeprefix('by_')))
538
- # Calculate the end position based on the original tag length
539
- end_pos = start_pos + len(tag_text)
540
- # Append the structured data for each tag
541
- tag_data.append({
542
- "original_tag": tag_text,
543
- "start_pos": start_pos,
544
- "end_pos": end_pos,
545
- "modified_tag": modified_tag,
546
- "artist_matrix_tag": artist_matrix_tag,
547
- "tf_idf_matrix_tag": tf_idf_matrix_tag,
548
- "node_type": nodetype
549
- })
550
- return tag_data
551
-
552
-
553
- def augment_bad_entities_with_regex(text):
554
- bad_entities = []
555
-
556
- #comma at end
557
- match = re.search(r',(?=\s*$)', text)
558
- if match:
559
- index = match.start()
560
- bad_entities.append({"entity":"Remove Final Comma", "start":index, "end":index+1})
561
- match = re.search(r'\([^()]*(,)\s*\)\s*$', text)
562
- if match:
563
- index = match.start(1)
564
- bad_entities.append({"entity":"Remove Final Comma", "start":index, "end":index+1})
565
- match = re.search(r'\([^()]*(,)\s*:\s*\d+(\.\d+)?\s*\)\s*$', text)
566
- if match:
567
- index = match.start(1)
568
- bad_entities.append({"entity":"Remove Final Comma", "start":index, "end":index+1})
569
-
570
- # Comma after parentheses, multiple occurrences
571
- for match in re.finditer(r'\)\s*(,)\s*[^\s]', text):
572
- index = match.start(1)
573
- bad_entities.append({"entity": "Move Comma Inside Parentheses", "start": index, "end": index + 1})
574
-
575
- return bad_entities
576
-
577
-
578
- def find_similar_artists(original_tags_string, top_n, context_similarity_weight, allow_nsfw_tags):
579
- try:
580
- new_tags_string = original_tags_string.lower()
581
- new_tags_string, removed_tags = remove_special_tags(new_tags_string)
582
-
583
- # Parse the prompt
584
- parsed = parser.parse(new_tags_string)
585
- # Extract tags from the parsed tree
586
- new_image_tags = extract_tags(parsed)
587
- tag_data = build_tag_offsets_dicts(new_image_tags)
588
-
589
- #Suggested tags stuff
590
- suggested_tags_html_content = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
591
- suggested_tags_html_content += "<h1>Suggested Tags</h1>" # Heading for the table
592
- suggested_tags = get_tfidf_reduced_similar_tags([item["tf_idf_matrix_tag"] for item in tag_data] + removed_tags, allow_nsfw_tags)
593
-
594
-
595
- unseen_tags_data, bad_entities = find_similar_tags(tag_data, suggested_tags, context_similarity_weight, allow_nsfw_tags)
596
-
597
-
598
- #Bad tags stuff
599
- bad_entities.extend(augment_bad_entities_with_regex(new_tags_string))
600
- bad_entities.sort(key=lambda x: x['start'])
601
- bad_tags_illustrated_string = {"text":new_tags_string, "entities":bad_entities}
602
-
603
- # Create a set of tags that should be filtered out
604
- filter_tags = {entry["original_tag"].strip() for entry in tag_data}
605
- # Use this set to filter suggested_tags
606
- suggested_tags_filtered = OrderedDict((k, v) for k, v in suggested_tags.items() if k not in filter_tags)
607
-
608
- # Splitting the dictionary into two based on the condition
609
- suggested_artist_tags_filtered = OrderedDict((k, v) for k, v in suggested_tags_filtered.items() if k.startswith("by "))
610
- suggested_non_artist_tags_filtered = OrderedDict((k, v) for k, v in suggested_tags_filtered.items() if not k.startswith("by ") and k not in special_tags)
611
-
612
- topnsuggestions = list(islice(suggested_non_artist_tags_filtered.items(), 100))
613
- suggested_tags_html_content += create_html_tables_for_tags("Suggested Tag", topnsuggestions, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
614
-
615
- #Artist stuff
616
- excluded_artists = ["by conditional dnp", "by unknown artist"]
617
- top_artists = [(key, value) for key, value in suggested_artist_tags_filtered.items() if key.lower() not in excluded_artists][:top_n]
618
- top_artists_str = create_top_artists_table(top_artists)
619
- dynamic_prompts_formatted_artists = "{" + "|".join([artist for artist, _ in top_artists]) + "}"
620
-
621
- image_galleries = []
622
- for root, dirs, files in os.walk(sample_images_directory_path):
623
- for name in dirs:
624
- baseline, artists = generate_artist_image_tuples([name[3:] for name, _ in top_artists], os.path.join(root, name))
625
- image_galleries.append(baseline) # Add baseline as its own gallery item
626
- image_galleries.append(artists) # Extend the list with artist tuples
627
-
628
- return (unseen_tags_data, bad_tags_illustrated_string, suggested_tags_html_content, top_artists_str, dynamic_prompts_formatted_artists, *image_galleries)
629
- except ParseError as e:
630
- return [], "Parse Error: Check for mismatched parentheses or something", "", "", None, None
631
-
632
-
633
- with gr.Blocks(css=css) as app:
634
- with gr.Group():
635
- with gr.Row():
636
- with gr.Column(scale=3):
637
- image_tags = gr.Textbox(label="Enter Prompt", placeholder="e.g. fox, outside, detailed background, ...")
638
- bad_tags_illustrated_string = gr.HighlightedText(show_legend=True, color_map={"Unknown Tag":"red","Duplicate":"yellow","Remove Final Comma":"purple","Move Comma Inside Parentheses":"green"}, label="Annotated Prompt")
639
- with gr.Column(scale=1):
640
- #image_path = os.path.join("https://huggingface.co/spaces/FoodDesert/Prompt_Squirrel/resolve/main", "transparentsquirrel.png")
641
- #gr.Image(label=" ", value=image_path, height=155, width=140)
642
- gr.HTML('<div style="text-align: center;"><img src="https://huggingface.co/spaces/FoodDesert/Prompt_Squirrel/resolve/main/mascotimages/transparentsquirrel.png" alt="Cute Mascot" style="max-height: 180px; background: transparent;"></div><br>')
643
- #gr.HTML("<br>" * 2) # Adjust the number of line breaks ("<br>") as needed to push the button down
644
- #image_path = os.path.join('mascotimages', "transparentsquirrel.png")
645
- #random_image_path = os.path.join('mascotimages', random.choice([f for f in os.listdir('mascotimages') if os.path.isfile(os.path.join('mascotimages', f))]))
646
- #with Image.open(random_image_path) as img:
647
- # gr.Image(value=img,show_label=False, show_download_button=False, show_share_button=False, height=200)
648
- #gr.Image(value="https://huggingface.co/spaces/FoodDesert/Prompt_Squirrel/resolve/main/mascotimages/transparentsquirrel.png",show_label=False, show_download_button=False, show_share_button=False, height=200)
649
- #I posted the image to discord, and that's where this link came from. This is a very ugly way to do this, but I could not, no matter what I tried, get it to display an image from within the space itself. The galleries work fine for some reason, but not this.
650
- #gr.Image(value="https://res.cloudinary.com/dnse84ol6/image/upload/v1713538125/transparentsquirrel_zhou7f.png",show_label=False, show_download_button=False, show_share_button=False, height=200)
651
- submit_button = gr.Button(variant="primary")
652
- with gr.Row():
653
- with gr.Column(scale=3):
654
- with gr.Group():
655
- with gr.Row():
656
- context_similarity_weight = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Context Similarity Weight")
657
- allow_nsfw = gr.Checkbox(label="Allow NSFW Tags", value=False)
658
- with gr.Row():
659
- with gr.Column(scale=2):
660
- unseen_tags = gr.HTML(label="Unknown Tags", value=create_html_placeholder(title="Unknown Tags"))
661
- with gr.Column(scale=1):
662
- suggested_tags = gr.HTML(label="Suggested Tags", value=create_html_placeholder(title="Suggested Tags"))
663
- with gr.Column(scale=1):
664
- with gr.Group():
665
- num_artists = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists")
666
- top_artists = gr.HTML(label="Top Artists", value=create_html_placeholder(title="Top Artists"))
667
- dynamic_prompts = gr.Textbox(label="Dynamic Prompts Format", info="For if you're using the Automatic1111 webui (https://github.com/AUTOMATIC1111/stable-diffusion-webui) with the Dynamic Prompts extension activated (https://github.com/adieyal/sd-dynamic-prompts) and want to try them all individually.")
668
- galleries = []
669
- for root, dirs, files in os.walk(sample_images_directory_path):
670
- for name in dirs:
671
- with gr.Row():
672
- baseline = gr.Gallery(allow_preview=False, rows=1, columns=1, height=420, scale=3)
673
- styles = gr.Gallery(preview=False, rows=2, columns=5, height=420, scale=8)
674
- galleries.extend([baseline, styles])
675
-
676
- submit_button.click(
677
- find_similar_artists,
678
- inputs=[image_tags, num_artists, context_similarity_weight, allow_nsfw],
679
- outputs=[unseen_tags, bad_tags_illustrated_string, suggested_tags, top_artists, dynamic_prompts] + galleries
680
- )
681
-
682
- gr.Markdown(faq_content)
683
-
684
-
685
- app.launch()
686
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from sklearn.metrics.pairwise import cosine_similarity
3
+ from scipy.sparse import csr_matrix
4
+ import numpy as np
5
+ import joblib
6
+ from joblib import load
7
+ import h5py
8
+ from io import BytesIO
9
+ import csv
10
+ import re
11
+ import random
12
+ import compress_fasttext
13
+ from collections import OrderedDict
14
+ from lark import Lark, Tree, Token
15
+ from lark.exceptions import ParseError
16
+ import json
17
+ import zipfile
18
+ from PIL import Image
19
+ import io
20
+ import os
21
+ import glob
22
+ import itertools
23
+ from itertools import islice
24
+ from pathlib import Path
25
+ import logging
26
+
27
+ # Set up logging
28
+ logging.basicConfig(filename='error.log', level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s')
29
+
30
+
31
+ faq_content="""
32
+ #4-20-2024 Why aren't there example images for most artists?
33
+
34
+ We recently updated the underlying data used to calculate the Suggested Artists section.
35
+ We have not yet generated example images for all the new artists.
36
+
37
+ # Questions:
38
+
39
+ ## What is the purpose of this tool?
40
+
41
+ Since Stable Diffusion's initial release in 2022, users have developed a myriad of fine-tuned text to image models, each with unique "linguistic" preferences depending on the data from which it was fine-tuned.
42
+ Some models react best when prompted with verbose scene descriptions akin to DALL-E, while others fine-tuned on images scraped from popular image boards understand those boards' tag sets.
43
+ This tool serves as a linguistic bridge to the e621 image board tag lexicon, on which many popular models such as Fluffyrock, Fluffusion, and Pony Diffusion v6 were trained.
44
+
45
+ When you enter a txt2img prompt and press the "submit" button, Prompt Squirrel parses your prompt and checks that all your tags are valid e621 tags.
46
+ If it finds any that are not, it recommends some valid e621 tags you can use to replace them in the "Unknown Tags" section.
47
+ Additionally, in the "Top Artists" text box, it lists the artists who would most likely draw an image having the set of tags you provided.
48
+ This is useful to align your prompt with the expected input to an e621-trained model.
49
+
50
+ ## Does input order matter?
51
+
52
+ No
53
+
54
+ ## Should I use underscores or spaces in the input tags?
55
+
56
+ As a rule, e621-trained models replace underscores in tags with spaces, so spaces are preferred.
57
+
58
+ ## Can I use parentheses or weights as in the Stable Diffusion Automatic1111 WebUI?
59
+
60
+ Yes, but only '(' and ')' and numerical weights, and all of these things are ignored in all calculations. The main benefit of this is that you can copy/paste prompts from one program to another with minimal editing.
61
+ An example that illustrates acceptable parentheses and weight formatting is:
62
+ ((sunset over the mountains)), (clear sky:1.5), ((eagle flying high:2.0)), river, (fish swimming in the river:1.2), (campfire, (marshmallows:2.1):1.3), stars in the sky, ((full moon:1.8)), (wolf howling:1.7)
63
+
64
+ ## Why are some valid tags marked as "unknown", and why don't some artists ever get returned?
65
+
66
+ Some data is excluded from consideration if it did not occur frequently enough in the sample from which the application makes its calculations.
67
+ If an artist or tag is too infrequent, we might not think we have enough data to make predictions about it.
68
+
69
+ ## Why do some suggested tags not have summaries or wiki links?
70
+
71
+ Both of these features are extracted from the tag wiki pages, but some valid e621 tags do not have wiki pages.
72
+
73
+ ## Are there any special tags?
74
+
75
+ Yes. We normalized the favorite counts of each image to a range of 0-9, with 0 being the lowest favcount, and 9 being the highest.
76
+ You can include any of these special tags: "score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9"
77
+ in your list to bias the output toward artists with higher or lower scoring images.
78
+
79
+ ## Are there any other special tricks?
80
+
81
+ Yes. If you want to more strongly bias the artist output toward a specific tag, you can just list it multiple times.
82
+ So for example, the query "red fox, red fox, red fox, score:7" will yield a list of artists who are more strongly associated with the tag "red fox"
83
+ than the query "red fox, score:7".
84
+
85
+ ## Why is this space tagged "not-for-all-audience"
86
+ The "not-for-all-audience" tag informs users that this tool's text output is derived from e621.net data for tag prediction and completion.
87
+ The app will try not to display nsfw tags unless the "Allow NSFW Tags" is checked, but the filter is not perfect.
88
+
89
+ ## How does the tag corrector work?
90
+
91
+ We collect the tag sets from over 4 million e621 posts, treating the tag set from each image as an individual document.
92
+ We then randomly replace about 10% of the tags in each document with a randomly selected alias from e621's list of aliases for the tag
93
+ (e.g. "canine" gets replaced with one of {k9,canines,mongrel,cannine,cnaine,feral_canine,anthro_canine}).
94
+ We then train a FastText (https://fasttext.cc/) model on the documents. The result of this training is a function that maps arbitrary words to vectors such that
95
+ the vector for a tag and the vectors for its aliases are all close together (because the model has seen them in similar contexts).
96
+ Since the lists of aliases contain misspellings and rephrasings of tags, the model should be robust to these kinds of problems as long as they are not too dissimilar from the alias lists.
97
+
98
+ To enhance the tag corrector further, we leverage conditional probabilities to refine our predictions.
99
+ Using the same 4 million post dataset, we calculate the conditional probability of each tag given the context of other tags appearing within the same document.
100
+ This is done by creating a co-occurrence matrix from our dataset, which records how frequently each pair of tags appears together across all documents.
101
+ By considering the context in which tags are used, we can now not only correct misspellings and rephrasings but also make more contextually relevant suggestions.
102
+ The "similarity weight" slider controls how much weight these conditional probabilities are given vs how much weight the FastText similarity model is given when suggesting replacements for invalid tags.
103
+ A similarity weight slider value of 0 means that only the FastText model's predictions will be used to calculate similarity scores, and a value of 1 means only the conditional probabilities are used (although the FastText model is still used to trim the list of candidates).
104
+
105
+ ## How is the artist list calculated?
106
+
107
+ Each artist is represented by a "pseudo-document" composed of all the tags from their uploaded images, treating these tags similarly to words in a text document.
108
+ Similarly, when you input a set of tags, the system creates a pseudo-document for your query out of all the tags.
109
+ It then uses a technique called cosine similarity to compare your tags against each artist's collection, essentially finding which artist's tags are most "similar" to yours.
110
+ This method helps identify artists whose work is closely aligned with the themes or elements you're interested in.
111
+ For those curious about the underlying mechanics of comparing text-like data, we employ the TF-IDF (Term Frequency-Inverse Document Frequency) method, a standard approach in information retrieval.
112
+ You can read more about TF-IDF on its [Wikipedia page](https://en.wikipedia.org/wiki/Tf%E2%80%93idf).
113
+
114
+ ## How do the sample images work?
115
+
116
+ In the first row of galleries, for each artist in the dataset, we generated a sample image with the model Fluffyrock Unleashed using the prompt "by artist, soyjak, anthro, male, bust portrait, meme, grin" where "artist" is the name of an artist.
117
+ The simplicity of the prompt, the the simplicty of the default style, and the recognizability of the character make it easier to understand how artist names affect generated image styles.
118
+ The image on the left captioned "No Artist" was generated with the same prompt, but with no artist name.
119
+ You should compare all the images to the first to see how the artist names affect the output.
120
+ Each subsequent row of images was generated using the same process, but with a different prompt.
121
+ See SamplePrompts.csv for the list of prompts used and their descriptions.
122
+ """
123
+
124
+
125
+ nsfw_threshold = 0.95 # Assuming the threshold value is defined here
126
+
127
+ css = """
128
+ .scrollable-content {
129
+ max-height: 500px;
130
+ overflow-y: auto;
131
+ }
132
+ """
133
+
134
+ grammar=r"""
135
+ !start: (prompt | /[][():]/+)*
136
+ prompt: (emphasized | plain | comma | WHITESPACE)*
137
+ !emphasized: "(" prompt ")"
138
+ | "(" prompt ":" [WHITESPACE] NUMBER [WHITESPACE] ")"
139
+ comma: ","
140
+ WHITESPACE: /\s+/
141
+ plain: /([^,\\\[\]():|]|\\.)+/
142
+ %import common.SIGNED_NUMBER -> NUMBER
143
+ """
144
+
145
+ # Initialize the parser
146
+ parser = Lark(grammar, start='start')
147
+
148
+ # Function to extract tags
149
+ def extract_tags(tree):
150
+ tags_with_positions = []
151
+ def _traverse(node):
152
+ if isinstance(node, Token) and node.type == '__ANON_1':
153
+ tag_position = node.start_pos
154
+ tag_text = node.value
155
+ tags_with_positions.append((tag_text, tag_position, "tag"))
156
+ elif not isinstance(node, Token):
157
+ for child in node.children:
158
+ _traverse(child)
159
+ _traverse(tree)
160
+ return tags_with_positions
161
+
162
+
163
+ special_tags = ["score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9", "rating:s", "rating:q", "rating:e"]
164
+ def remove_special_tags(original_string):
165
+ tags = [tag.strip() for tag in original_string.split(",")]
166
+ remaining_tags = [tag for tag in tags if tag not in special_tags]
167
+ removed_tags = [tag for tag in tags if tag in special_tags]
168
+ return ", ".join(remaining_tags), removed_tags
169
+
170
+
171
+ # Define a function to load all necessary components
172
+ def load_model_components(file_path):
173
+ # Ensure the file path is a Path object for robust path handling
174
+ file_path = Path(file_path)
175
+
176
+ # Check if the file exists
177
+ if not file_path.is_file():
178
+ raise FileNotFoundError(f"The specified joblib file was not found: {file_path}")
179
+
180
+ # Load all the model components from the joblib file
181
+ model_components = joblib.load(file_path)
182
+
183
+ # Create a reverse mapping from row index to tag
184
+ if 'tag_to_row_index' in model_components:
185
+ model_components['row_to_tag'] = {idx: tag for tag, idx in model_components['tag_to_row_index'].items()}
186
+
187
+ return model_components
188
+
189
+ # Load all components at the start
190
+ tf_idf_components = load_model_components('tf_idf_files_420.joblib')
191
+
192
+
193
+ nsfw_tags = set() # Initialize an empty set to store words meeting the threshold
194
+ # Open and read the CSV file
195
+ with open("word_rating_probabilities.csv", 'r', newline='', encoding='utf-8') as csvfile:
196
+ reader = csv.reader(csvfile)
197
+ next(reader, None) # Skip the header row
198
+ for row in reader:
199
+ word = row[0] # The word is in the first column
200
+ probability_sum = float(row[1]) # The sum of probabilities is in the second column, convert to float for comparison
201
+ # Check if the probability sum meets the threshold and add the word to the set if it does
202
+ if probability_sum >= nsfw_threshold:
203
+ nsfw_tags.add(word)
204
+
205
+
206
+ # Read the set of valid artists into memory.
207
+ artist_set = set()
208
+ with open("fluffyrock_3m.csv", 'r', newline='', encoding='utf-8') as csvfile:
209
+ """
210
+ Load artist names from a CSV file and store them in the global set.
211
+ Artist tags start with 'by_' and the prefix will be removed.
212
+ """
213
+ reader = csv.reader(csvfile)
214
+ for row in reader:
215
+ tag_name = row[0] # Assuming the first column contains the tag names
216
+ if tag_name.startswith('by_'):
217
+ # Strip 'by_' from the start of the tag name and add to the set
218
+ artist_name = tag_name[3:] # Remove the first three characters 'by_'
219
+ artist_set.add(artist_name)
220
+ def is_artist(name):
221
+ return name in artist_set
222
+
223
+
224
+ sample_images_directory_path = 'sampleimages'
225
+ def generate_artist_image_tuples(top_artists, image_directory):
226
+ json_files = glob.glob(f'{image_directory}/*.json')
227
+ json_file_path = json_files[0] if json_files else None
228
+ with open(json_file_path, 'r') as json_file:
229
+ artist_to_file_map = json.load(json_file)
230
+
231
+ filename = artist_to_file_map.get("")
232
+ image_path = os.path.join(image_directory, filename)
233
+ if os.path.exists(image_path):
234
+ baseline_tuple = [(image_path, "No Artist")]
235
+
236
+ artist_image_tuples = []
237
+ for artist in top_artists:
238
+ filename = artist_to_file_map.get(artist)
239
+ if filename:
240
+ image_path = os.path.join(image_directory, filename)
241
+ if os.path.exists(image_path):
242
+ artist_image_tuples.append((image_path, artist if artist else "No Artist"))
243
+
244
+ return baseline_tuple, artist_image_tuples
245
+
246
+
247
+ def clean_tag(tag):
248
+ return ''.join(char for char in tag if ord(char) < 128)
249
+
250
+
251
+ #Normally returns tag to aliases, but when reverse=True, returns alias to tags
252
+ def build_aliases_dict(filename, reverse=False):
253
+ aliases_dict = {}
254
+ with open(filename, 'r', newline='', encoding='utf-8') as csvfile:
255
+ reader = csv.reader(csvfile)
256
+ for row in reader:
257
+ tag = clean_tag(row[0])
258
+ alias_list = [] if row[3] == "null" else [clean_tag(alias) for alias in row[3].split(',')]
259
+ if reverse:
260
+ for alias in alias_list:
261
+ aliases_dict.setdefault(alias, []).append(tag)
262
+ else:
263
+ aliases_dict[tag] = alias_list
264
+ return aliases_dict
265
+
266
+
267
+ def build_tag_count_dict(filename):
268
+ with open(filename, 'r', newline='', encoding='utf-8') as csvfile:
269
+ reader = csv.reader(csvfile)
270
+ result_dict = {}
271
+ for row in reader:
272
+ key = row[0]
273
+ value = int(row[2]) if row[2].isdigit() else None
274
+ if value is not None:
275
+ result_dict[key] = value
276
+ return result_dict
277
+
278
+ import csv
279
+
280
+
281
+ def build_tag_id_wiki_dict(filename='wiki_pages-2023-08-08.csv'):
282
+ """
283
+ Reads a CSV file and returns a dictionary mapping tag names to tuples of
284
+ (number, most relevant line from the wiki entry). Rows with a non-integer in the first column are ignored.
285
+ The most relevant line is the first line that does not start with "thumb" and is not blank.
286
+
287
+ Parameters:
288
+ - filename: The path to the CSV file.
289
+
290
+ Returns:
291
+ - A dictionary where each key is a tag name and each value is a tuple (number, most relevant wiki entry line).
292
+ """
293
+ tag_data = {}
294
+ with open(filename, 'r', encoding='utf-8') as csvfile:
295
+ reader = csv.reader(csvfile)
296
+
297
+ # Skip the header row
298
+ next(reader)
299
+
300
+ for row in reader:
301
+ try:
302
+ # Attempt to convert the first column to an integer
303
+ number = int(row[0])
304
+ except ValueError:
305
+ # If conversion fails, skip this row
306
+ continue
307
+
308
+ tag = row[3]
309
+ wiki_entry_full = row[4]
310
+
311
+ # Process the wiki_entry to find the most relevant line
312
+ relevant_line = ''
313
+ for line in wiki_entry_full.split('\n'):
314
+ if line.strip() and not line.startswith("thumb"):
315
+ relevant_line = line
316
+ break
317
+
318
+ # Map the tag to a tuple of (number, relevant_line)
319
+ tag_data[tag] = (number, relevant_line)
320
+
321
+ return tag_data
322
+
323
+
324
+ def create_html_tables_for_tags(subtable_heading, item_heading, word_similarity_tuples, tag2count, tag2idwiki):
325
+ # Wrap the tag part in a <span> with styles for bold and larger font
326
+ html_str = f"<div style='display: inline-block; margin: 20px; vertical-align: top;'><table><thead><tr><th colspan='3' style='text-align: center; padding-bottom: 10px;'><span style='font-weight: bold; font-size: 20px;'>{subtable_heading}</span></th></tr></thead><tbody><tr style='border-bottom: 1px solid #000;'><th>{item_heading}</th><th>Similarity</th><th>Count</th></tr>"
327
+ # Loop through the results and add table rows for each
328
+ for word, sim in word_similarity_tuples:
329
+ word_with_underscores = word.replace(' ', '_')
330
+ word_with_escaped_parentheses = word.replace("\\(", "(").replace("\\)", ")").replace("(", "\\(").replace(")", "\\)")
331
+ count = tag2count.get(word_with_underscores.replace("\\(", "(").replace("\\)", ")"), 0) # Get the count if available, otherwise default to 0
332
+ tag_id, wiki_entry = tag2idwiki.get(word_with_underscores, (None, ''))
333
+ # Check if tag_id and wiki_entry are valid
334
+ if tag_id is not None and wiki_entry:
335
+ # Construct the URL for the tag's wiki page
336
+ wiki_url = f"https://e621.net/wiki_pages/{tag_id}"
337
+ # Make the tag a hyperlink with a tooltip
338
+ tag_element = f"<a href='{wiki_url}' target='_blank' title='{wiki_entry}'>{word_with_escaped_parentheses}</a>"
339
+ else:
340
+ # Display the word without any hyperlink or tooltip
341
+ tag_element = word_with_escaped_parentheses
342
+ # Include the tag element in the table row
343
+ html_str += f"<tr><td style='border: none; padding: 5px; height: 20px;'>{tag_element}</td><td style='border: none; padding: 5px; height: 20px;'>{round(sim, 3)}</td><td style='border: none; padding: 5px; height: 20px;'>{count}</td></tr>"
344
+
345
+ html_str += "</tbody></table></div>"
346
+ return html_str
347
+
348
+
349
+ def create_top_artists_table(top_artists):
350
+ # Add a heading above the table
351
+ html_str = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
352
+ html_str += "<h1>Top Artists</h1>" # Heading for the table
353
+ # Start the table with increased font size and no borders between rows
354
+ html_str += "<table style='font-size: 20px; border-collapse: collapse;'>"
355
+ html_str += "<thead><tr><th>Artist</th><th>Similarity</th></tr></thead><tbody>"
356
+ # Loop through the top artists and add a row for each without the rank and without borders between rows
357
+ for artist, score in top_artists:
358
+ artist_name = artist[3:] if artist.startswith("by ") else artist # Remove "by " prefix
359
+ similarity_percentage = "{:.1f}%".format(score * 100) # Convert score to percentage string with one decimal
360
+ html_str += f"<td style='padding: 3px 20px; border: none;'>{artist_name}</td><td style='padding: 3px 20px; border: none;'>{similarity_percentage}</td></tr>"
361
+
362
+ # Close the table HTML
363
+ html_str += "</tbody></table></div>"
364
+
365
+ return html_str
366
+
367
+
368
+ def construct_pseudo_vector(pseudo_doc_terms, idf_loaded, tag_to_row_loaded):
369
+ # Initialize a vector of zeros with the length of the term_to_index mapping
370
+ pseudo_vector = np.zeros(len(tag_to_row_loaded))
371
+
372
+ # Fill in the vector for terms in the pseudo document
373
+ for term in pseudo_doc_terms:
374
+ if term in tag_to_row_loaded:
375
+ index = tag_to_row_loaded[term]
376
+ pseudo_vector[index] = idf_loaded.get(term, 0)
377
+
378
+ # Return the vector as a 2D array for compatibility with SVD transform
379
+ return pseudo_vector.reshape(1, -1)
380
+
381
+
382
+ def get_top_indices(reduced_pseudo_vector, reduced_matrix):
383
+ # Compute cosine similarities
384
+ similarities = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()
385
+
386
+ # Get sorted tag indices based on similarities, in descending order
387
+ sorted_indices = np.argsort(-similarities)
388
+
389
+ # Return the top N indices
390
+ return sorted_indices
391
+
392
+
393
+ def get_tfidf_reduced_similar_tags(pseudo_doc_terms, allow_nsfw_tags):
394
+ idf = tf_idf_components['idf']
395
+ term_to_column_index = tf_idf_components['tag_to_column_index']
396
+ row_to_tag = tf_idf_components['row_to_tag']
397
+ reduced_matrix = tf_idf_components['reduced_matrix']
398
+ svd = tf_idf_components['svd_model']
399
+
400
+ # Construct the TF-IDF vector
401
+ pseudo_tfidf_vector = construct_pseudo_vector(pseudo_doc_terms, idf, term_to_column_index)
402
+
403
+ # Reduce the dimensionality of the pseudo-document vector for the reduced matrix
404
+ reduced_pseudo_vector = svd.transform(pseudo_tfidf_vector)
405
+
406
+ # Compute cosine similarities in the reduced space
407
+ cosine_similarities_reduced = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()
408
+
409
+ # Sort the indices by descending cosine similarity
410
+ top_indices_reduced = np.argsort(cosine_similarities_reduced)
411
+
412
+ # Map indices to tags with their similarities
413
+ tag_similarity_dict = {row_to_tag[i]: cosine_similarities_reduced[i] for i in top_indices_reduced if i in row_to_tag}
414
+
415
+ if not allow_nsfw_tags:
416
+ tag_similarity_dict = {tag: sim for tag, sim in tag_similarity_dict.items() if tag not in nsfw_tags}
417
+
418
+ tag_similarity_dict = {"by " + tag if is_artist(tag) else tag: sim for tag, sim in tag_similarity_dict.items()}
419
+
420
+ # Sort and transform tag names
421
+ sorted_tag_similarity_dict = OrderedDict(sorted(tag_similarity_dict.items(), key=lambda x: x[1], reverse=True))
422
+ transformed_sorted_tag_similarity_dict = OrderedDict(
423
+ (key.replace('_', ' ').replace('(', '\\(').replace(')', '\\)'), value)
424
+ for key, value in sorted_tag_similarity_dict.items()
425
+ )
426
+
427
+ return transformed_sorted_tag_similarity_dict
428
+
429
+
430
+ def create_html_placeholder(title="", content="", placeholder_height=400, placeholder_width="100%"):
431
+ # Include a title in the same style as the top artists table heading
432
+ html_placeholder = f"<div class=\"scrollable-content\" style='text-align: center;'><h1>{title}</h1></div>"
433
+ # Conditionally add content if present
434
+ if content:
435
+ html_placeholder += f"<div style='text-align: center; margin-bottom: 20px;'><p>{content}</p></div>"
436
+ # Add the placeholder div with specified height and width
437
+ html_placeholder += f"<div style='height: {placeholder_height}px; width: {placeholder_width}; margin: 20px auto; background: transparent;'></div>"
438
+ return html_placeholder
439
+
440
+
441
+ def find_similar_tags(test_tags, tag_to_context_similarity, context_similarity_weight, allow_nsfw_tags):
442
+ #Initialize stuff
443
+ if not hasattr(find_similar_tags, "fasttext_small_model"):
444
+ find_similar_tags.fasttext_small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load('e621FastTextModel010Replacement_small.bin')
445
+ tag_aliases_file = 'fluffyrock_3m.csv'
446
+ if not hasattr(find_similar_tags, "tag2aliases"):
447
+ find_similar_tags.tag2aliases = build_aliases_dict(tag_aliases_file)
448
+ if not hasattr(find_similar_tags, "alias2tags"):
449
+ find_similar_tags.alias2tags = build_aliases_dict(tag_aliases_file, reverse=True)
450
+ if not hasattr(find_similar_tags, "tag2count"):
451
+ find_similar_tags.tag2count = build_tag_count_dict(tag_aliases_file)
452
+ if not hasattr(find_similar_tags, "tag2idwiki"):
453
+ find_similar_tags.tag2idwiki = build_tag_id_wiki_dict()
454
+
455
+ modified_tags = [tag_info['modified_tag'] for tag_info in test_tags]
456
+ transformed_tags = [tag.replace(' ', '_') for tag in modified_tags]
457
+
458
+ # Find similar tags and prepare data for tables
459
+ html_content = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
460
+ html_content += "<h1>Unknown Tags</h1>" # Heading for the table
461
+ tags_added = False
462
+ bad_entities = []
463
+ known_entities_in_prompt = []
464
+ encountered_modified_tags = set()
465
+ for tag_info in test_tags:
466
+ original_tag = tag_info['original_tag']
467
+ modified_tag = tag_info['modified_tag']
468
+ start_pos = tag_info['start_pos']
469
+ end_pos = tag_info['end_pos']
470
+ node_type = tag_info['node_type']
471
+
472
+ if modified_tag in special_tags:
473
+ bad_entities.append({"entity":"Special", "start":start_pos, "end":end_pos})
474
+ continue
475
+
476
+ if modified_tag in encountered_modified_tags:
477
+ bad_entities.append({"entity":"Duplicate", "start":start_pos, "end":end_pos})
478
+ continue
479
+ encountered_modified_tags.add(modified_tag)
480
+
481
+ if node_type == "double_comma":
482
+ bad_entities.append({"entity":"Double Comma", "start":start_pos, "end":end_pos})
483
+ continue
484
+
485
+ modified_tag_for_search = modified_tag.replace(' ','_')
486
+ similar_words = find_similar_tags.fasttext_small_model.most_similar(modified_tag_for_search, topn = 100)
487
+ result, seen = [], set(transformed_tags)
488
+
489
+ if modified_tag_for_search in find_similar_tags.tag2aliases:
490
+ if modified_tag in find_similar_tags.tag2aliases and "_" in modified_tag: #Implicitly tell the user that they should get rid of the underscore
491
+ result.append(modified_tag_for_search.replace('_',' '), 1)
492
+ seen.add(modified_tag)
493
+ else: #The user correctly did not put underscores in their tag
494
+ count = find_similar_tags.tag2count.get(modified_tag_for_search, 0) # Get the count if available, otherwise default to 0
495
+ tag_id, wiki_entry = find_similar_tags.tag2idwiki.get(modified_tag_for_search, (None, ''))
496
+ # Check if tag_id and wiki_entry are valid
497
+ wiki_url = ""
498
+ if tag_id is not None and wiki_entry:
499
+ # Construct the URL for the tag's wiki page
500
+ wiki_url = f"https://e621.net/wiki_pages/{tag_id}"
501
+ known_entities_in_prompt.append({"entity":"Known Tag", "start":start_pos, "end":end_pos, "count":count, "wiki_url":wiki_url, "wiki_entry":wiki_entry})
502
+ continue
503
+ else:
504
+ for item in similar_words:
505
+ similar_word, similarity = item
506
+ if similar_word not in seen:
507
+ if similar_word in find_similar_tags.tag2aliases:
508
+ result.append((similar_word.replace('_', ' '), round(similarity, 3)))
509
+ seen.add(similar_word)
510
+ else:
511
+ for similar_tag in find_similar_tags.alias2tags.get(similar_word, []):
512
+ if similar_tag not in seen:
513
+ result.append((similar_tag.replace('_', ' '), round(similarity, 3)))
514
+ seen.add(similar_tag)
515
+
516
+ #Remove NSFW tags if appropriate.
517
+ if not allow_nsfw_tags:
518
+ result = [(word, score) for word, score in result if word.replace(' ','_') not in nsfw_tags]
519
+
520
+ #Adjust score based on context
521
+ for i in range(len(result)):
522
+ word, score = result[i] # Unpack the tuple
523
+ context_score = tag_to_context_similarity.get(word,0)
524
+ result[i] = (word, .5 * ((context_similarity_weight * context_score) + ((1 - context_similarity_weight) * score)))
525
+
526
+ result = sorted(result, key=lambda x: x[1], reverse=True)[:10]
527
+ html_content += create_html_tables_for_tags(modified_tag, "Corrected Tag", result, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
528
+
529
+ bad_entities.append({"entity":"Unknown Tag", "start":start_pos, "end":end_pos})
530
+
531
+ tags_added=True
532
+ # If no tags were processed, add a message
533
+ if not tags_added:
534
+ html_content = create_html_placeholder(title="Unknown Tags", content="No Unknown Tags Found")
535
+
536
+ return html_content, bad_entities, known_entities_in_prompt # Return list of lists for Dataframe
537
+
538
+
539
+ def build_tag_offsets_dicts(new_image_tags_with_positions):
540
+ # Structure the data for HighlightedText
541
+ tag_data = []
542
+ for tag_text, start_pos, nodetype in new_image_tags_with_positions:
543
+ # Modify the tag
544
+ modified_tag = tag_text.replace('_', ' ').replace('\\(', '(').replace('\\)', ')').strip()
545
+ artist_matrix_tag = tag_text.replace('_', ' ').replace('\\(', '\(').replace('\\)', '\)').strip()
546
+ tf_idf_matrix_tag = re.sub(r'\\([()])', r'\1', re.sub(r' ', '_', tag_text.strip().removeprefix('by ').removeprefix('by_')))
547
+ # Calculate the end position based on the original tag length
548
+ end_pos = start_pos + len(tag_text)
549
+ # Append the structured data for each tag
550
+ tag_data.append({
551
+ "original_tag": tag_text,
552
+ "start_pos": start_pos,
553
+ "end_pos": end_pos,
554
+ "modified_tag": modified_tag,
555
+ "artist_matrix_tag": artist_matrix_tag,
556
+ "tf_idf_matrix_tag": tf_idf_matrix_tag,
557
+ "node_type": nodetype
558
+ })
559
+ return tag_data
560
+
561
+
562
+ def augment_bad_entities_with_regex(text):
563
+ bad_entities = []
564
+
565
+ #comma at end
566
+ match = re.search(r',(?=\s*$)', text)
567
+ if match:
568
+ index = match.start()
569
+ bad_entities.append({"entity":"Remove Final Comma", "start":index, "end":index+1})
570
+ match = re.search(r'\([^()]*(,)\s*\)\s*$', text)
571
+ if match:
572
+ index = match.start(1)
573
+ bad_entities.append({"entity":"Remove Final Comma", "start":index, "end":index+1})
574
+ match = re.search(r'\([^()]*(,)\s*:\s*\d+(\.\d+)?\s*\)\s*$', text)
575
+ if match:
576
+ index = match.start(1)
577
+ bad_entities.append({"entity":"Remove Final Comma", "start":index, "end":index+1})
578
+
579
+ # Comma after parentheses, multiple occurrences
580
+ for match in re.finditer(r'(?<!\\)\)\s*(,)\s*[^\s]', text):
581
+ index = match.start(1)
582
+ bad_entities.append({"entity": "Move Comma Inside Parentheses", "start": index, "end": index + 1})
583
+
584
+ return bad_entities
585
+
586
+ def escape_html(text):
587
+ return text.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;").replace('"', "&quot;").replace("'", "&#039;")
588
+
589
+ def format_annotated_html(bad_entities, known_entities, text):
590
+ tooltip_map = {
591
+ "Unknown Tag": "This may not be a valid e621 tag. Consider removing or replacing it with tag(s) from the \"Unknown Tags\" section.",
592
+ "Duplicate": "This tag has appeared multiple times in your prompt. Consider removing the copies.",
593
+ "Remove Final Comma": "There should be no comma at the end of your prompt. Consider removing it.",
594
+ "Move Comma Inside Parentheses": "In most e621-based models, the comma following a tag functions as an &quot;attention anchor&quot;, carrying most of the tag&apos;s information. It should therefore be assigned the same weight as the rest of the tag. So instead of &quot;(lineless:1.1),&quot;, consider &quot;(lineless,:1.1)&quot; or &quot;(lineless,)&quot;",
595
+ "Double Comma": "One comma between tags is considered ample."
596
+ }
597
+ color_map = {
598
+ "Unknown Tag": ("white", "red"), # White text on red background
599
+ "Duplicate": ("black", "yellow"), # Black text on yellow background
600
+ "Remove Final Comma": ("white", "blue"), # White text on blue background
601
+ "Move Comma Inside Parentheses": ("white", "green"), # White text on green background
602
+ "Double Comma": ("white","orange")
603
+ }
604
+
605
+ # Combine and sort entities
606
+ combined_entities = bad_entities + known_entities
607
+ combined_entities = sorted(combined_entities, key=lambda x: x['start'],reverse=True)
608
+
609
+ # Generate HTML for the main text
610
+ html_text = text
611
+ for entity in combined_entities:
612
+ start = entity['start']
613
+ end = entity['end']
614
+ label = entity['entity']
615
+ if label == "Known Tag":
616
+ wiki_url = entity.get('wiki_url', '')
617
+ count = entity['count']
618
+ wiki_entry = entity.get('wiki_entry', '')
619
+ sanitized_wiki_entry = escape_html(wiki_entry) if wiki_entry else 'Unavailable'
620
+ if wiki_url: # Check if wiki_url is not empty
621
+ html_part = f'<a href="{wiki_url}" target="_blank" title="Count: {count}\tWiki: {sanitized_wiki_entry}" style="text-decoration: none; color: white; cursor: pointer; font-style: italic;">{text[start:end]}</a>'
622
+ else:
623
+ html_part = f'<span title="Count: {count}\tWiki: {sanitized_wiki_entry}" style="text-decoration: none; color: white; cursor: help; font-style: italic;">{text[start:end]}</span>'
624
+ else:
625
+ color = color_map.get(label, ("black", "white"))
626
+ html_part = f'<span style="background-color: {color[1]}; color: {color[0]};">{text[start:end]}</span>'
627
+ html_text = html_text[:start] + html_part + html_text[end:]
628
+
629
+ # Generate HTML for the color key
630
+ color_key_html = "<div style='text-align: right; margin-top: 20px;'>Key:"
631
+ used_labels = set(entity['entity'] for entity in bad_entities)
632
+ for label, colors in color_map.items():
633
+ if label in used_labels:
634
+ tooltip = tooltip_map.get(label, "")
635
+ # Adding margin-right for spacing between items
636
+ color_key_html += f" <span style='background-color: {colors[1]}; color: {colors[0]}; margin-right: 10px;' title='{tooltip}'>{label}</span>"
637
+ color_key_html += "</div>"
638
+
639
+ return f'<div style="padding: 10px; font-size: 16px;">{html_text}</div>{color_key_html}'
640
+
641
+
642
+ def find_similar_artists(original_tags_string, top_n, context_similarity_weight, allow_nsfw_tags):
643
+ try:
644
+ new_tags_string = original_tags_string.lower()
645
+ new_tags_string, removed_tags = remove_special_tags(new_tags_string)
646
+
647
+ # Parse the prompt
648
+ parsed = parser.parse(new_tags_string)
649
+ # Extract tags from the parsed tree
650
+ new_image_tags = extract_tags(parsed)
651
+ tag_data = build_tag_offsets_dicts(new_image_tags)
652
+
653
+ #Suggested tags stuff
654
+ suggested_tags_html_content = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
655
+ suggested_tags_html_content += "<h1>Suggested Tags</h1>" # Heading for the table
656
+ suggested_tags = get_tfidf_reduced_similar_tags([item["tf_idf_matrix_tag"] for item in tag_data] + removed_tags, allow_nsfw_tags)
657
+
658
+ unseen_tags_data, bad_entities, known_entities = find_similar_tags(tag_data, suggested_tags, context_similarity_weight, allow_nsfw_tags)
659
+
660
+ #Bad tags stuff
661
+ bad_entities.extend(augment_bad_entities_with_regex(new_tags_string))
662
+ bad_entities.sort(key=lambda x: x['start'])
663
+ #bad_tags_illustrated_string = {"text":new_tags_string, "entities":bad_entities}
664
+ bad_tags_illustrated_html = format_annotated_html(bad_entities, known_entities, new_tags_string)
665
+
666
+ # Create a set of tags that should be filtered out
667
+ filter_tags = {entry["original_tag"].strip() for entry in tag_data}
668
+ # Use this set to filter suggested_tags
669
+ suggested_tags_filtered = OrderedDict((k, v) for k, v in suggested_tags.items() if k not in filter_tags)
670
+
671
+ # Splitting the dictionary into two based on the condition
672
+ suggested_artist_tags_filtered = OrderedDict((k, v) for k, v in suggested_tags_filtered.items() if k.startswith("by "))
673
+ suggested_non_artist_tags_filtered = OrderedDict((k, v) for k, v in suggested_tags_filtered.items() if not k.startswith("by ") and k not in special_tags)
674
+
675
+ topnsuggestions = list(islice(suggested_non_artist_tags_filtered.items(), 100))
676
+ suggested_tags_html_content += create_html_tables_for_tags("-", "Suggested Tag", topnsuggestions, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
677
+
678
+ #Artist stuff
679
+ excluded_artists = ["by conditional dnp", "by unknown artist"]
680
+ top_artists = [(key, value) for key, value in suggested_artist_tags_filtered.items() if key.lower() not in excluded_artists][:top_n]
681
+ top_artists_str = create_top_artists_table(top_artists)
682
+ dynamic_prompts_formatted_artists = "{" + "|".join([artist for artist, _ in top_artists]) + "}"
683
+
684
+ image_galleries = []
685
+ for root, dirs, files in os.walk(sample_images_directory_path):
686
+ for name in dirs:
687
+ baseline, artists = generate_artist_image_tuples([name[3:] for name, _ in top_artists], os.path.join(root, name))
688
+ image_galleries.append(baseline) # Add baseline as its own gallery item
689
+ image_galleries.append(artists) # Extend the list with artist tuples
690
+
691
+ return (unseen_tags_data, bad_tags_illustrated_html, suggested_tags_html_content, top_artists_str, dynamic_prompts_formatted_artists, *image_galleries)
692
+ except ParseError as e:
693
+ return [], "Parse Error: Check for mismatched parentheses or something", "", "", None, None
694
+
695
+
696
+ with gr.Blocks(css=css) as app:
697
+ with gr.Group():
698
+ with gr.Row():
699
+ with gr.Column(scale=3):
700
+ image_tags = gr.Textbox(label="Enter Prompt", placeholder="e.g. fox, outside, detailed background, ...")
701
+ #bad_tags_illustrated_string = gr.HighlightedText(show_legend=True, color_map={"Unknown Tag":"red","Duplicate":"yellow","Remove Final Comma":"purple","Move Comma Inside Parentheses":"green"}, label="Annotated Prompt")
702
+ bad_tags_illustrated_string = gr.HTML()
703
+ with gr.Column(scale=1):
704
+ #image_path = os.path.join("https://huggingface.co/spaces/FoodDesert/Prompt_Squirrel/resolve/main", "transparentsquirrel.png")
705
+ #gr.Image(label=" ", value=image_path, height=155, width=140)
706
+ gr.HTML('<div style="text-align: center;"><img src="https://huggingface.co/spaces/FoodDesert/Prompt_Squirrel/resolve/main/mascotimages/transparentsquirrel.png" alt="Cute Mascot" style="max-height: 180px; background: transparent;"></div><br>')
707
+ #gr.HTML("<br>" * 2) # Adjust the number of line breaks ("<br>") as needed to push the button down
708
+ #image_path = os.path.join('mascotimages', "transparentsquirrel.png")
709
+ #random_image_path = os.path.join('mascotimages', random.choice([f for f in os.listdir('mascotimages') if os.path.isfile(os.path.join('mascotimages', f))]))
710
+ #with Image.open(random_image_path) as img:
711
+ # gr.Image(value=img,show_label=False, show_download_button=False, show_share_button=False, height=200)
712
+ #gr.Image(value="https://huggingface.co/spaces/FoodDesert/Prompt_Squirrel/resolve/main/mascotimages/transparentsquirrel.png",show_label=False, show_download_button=False, show_share_button=False, height=200)
713
+ #I posted the image to discord, and that's where this link came from. This is a very ugly way to do this, but I could not, no matter what I tried, get it to display an image from within the space itself. The galleries work fine for some reason, but not this.
714
+ #gr.Image(value="https://res.cloudinary.com/dnse84ol6/image/upload/v1713538125/transparentsquirrel_zhou7f.png",show_label=False, show_download_button=False, show_share_button=False, height=200)
715
+ submit_button = gr.Button(variant="primary")
716
+ with gr.Row():
717
+ with gr.Column(scale=3):
718
+ with gr.Group():
719
+ with gr.Row():
720
+ context_similarity_weight = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Context Similarity Weight")
721
+ allow_nsfw = gr.Checkbox(label="Allow NSFW Tags", value=False)
722
+ with gr.Row():
723
+ with gr.Column(scale=2):
724
+ unseen_tags = gr.HTML(label="Unknown Tags", value=create_html_placeholder(title="Unknown Tags"))
725
+ with gr.Column(scale=1):
726
+ suggested_tags = gr.HTML(label="Suggested Tags", value=create_html_placeholder(title="Suggested Tags"))
727
+ with gr.Column(scale=1):
728
+ with gr.Group():
729
+ num_artists = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists")
730
+ top_artists = gr.HTML(label="Top Artists", value=create_html_placeholder(title="Top Artists"))
731
+ dynamic_prompts = gr.Textbox(label="Dynamic Prompts Format", info="For if you're using the Automatic1111 webui (https://github.com/AUTOMATIC1111/stable-diffusion-webui) with the Dynamic Prompts extension activated (https://github.com/adieyal/sd-dynamic-prompts) and want to try them all individually.")
732
+ galleries = []
733
+ for root, dirs, files in os.walk(sample_images_directory_path):
734
+ for name in dirs:
735
+ with gr.Row():
736
+ baseline = gr.Gallery(allow_preview=False, rows=1, columns=1, height=420, scale=3)
737
+ styles = gr.Gallery(preview=False, rows=2, columns=5, height=420, scale=8)
738
+ galleries.extend([baseline, styles])
739
+
740
+ submit_button.click(
741
+ find_similar_artists,
742
+ inputs=[image_tags, num_artists, context_similarity_weight, allow_nsfw],
743
+ outputs=[unseen_tags, bad_tags_illustrated_string, suggested_tags, top_artists, dynamic_prompts] + galleries
744
+ )
745
+
746
+ gr.Markdown(faq_content)
747
+
748
+
749
+ app.launch()
750
+