Spaces:
Running
Running
FoodDesert
commited on
Upload 2 files
Browse files- ConvertSampleImagesToJpeg.ipynb +147 -0
- app.py +16 -100
ConvertSampleImagesToJpeg.ipynb
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 7,
|
6 |
+
"id": "4aa04654",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": []
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"id": "098e115f",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import glob\n",
|
19 |
+
"import os\n",
|
20 |
+
"import json\n",
|
21 |
+
"from PIL import Image\n",
|
22 |
+
"from sd_parsers import ParserManager\n",
|
23 |
+
"\n",
|
24 |
+
"# Directory with PNG images\n",
|
25 |
+
"image_directory = 'E:/image/holder/Tagset_Completer/sampleimages/02landscape'\n",
|
26 |
+
"\n",
|
27 |
+
"# Initialize the ParserManager\n",
|
28 |
+
"parser_manager = ParserManager()\n",
|
29 |
+
"\n",
|
30 |
+
"# Dictionary for artist names to corresponding JPG file names\n",
|
31 |
+
"artist_to_file_map = {}\n",
|
32 |
+
"\n",
|
33 |
+
"# Iterate through PNG files in the directory\n",
|
34 |
+
"for png_file in glob.glob(os.path.join(image_directory, '*.png')):\n",
|
35 |
+
" with Image.open(png_file) as img:\n",
|
36 |
+
" # Extract metadata using ParserManager\n",
|
37 |
+
" prompt_info = parser_manager.parse(img)\n",
|
38 |
+
" if prompt_info and prompt_info.prompts:\n",
|
39 |
+
" first_prompt_text = list(prompt_info.prompts)[0].value.split(',')[0].strip()\n",
|
40 |
+
" if first_prompt_text.startswith(\"by \"):\n",
|
41 |
+
" first_prompt_text = first_prompt_text[3:] # Remove \"by \" prefix\n",
|
42 |
+
" artist_to_file_map[first_prompt_text] = os.path.basename(png_file).replace('.png', '.jpg')\n",
|
43 |
+
" else:\n",
|
44 |
+
" artist_to_file_map[\"\"] = os.path.basename(png_file).replace('.png', '.jpg')\n",
|
45 |
+
"\n",
|
46 |
+
"# Save the mapping to a JSON file in the same directory\n",
|
47 |
+
"json_path = os.path.join(image_directory, 'artist_to_file_map.json')\n",
|
48 |
+
"with open(json_path, 'w') as json_file:\n",
|
49 |
+
" json.dump(artist_to_file_map, json_file, indent=4)\n"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": 2,
|
55 |
+
"id": "ac5cba7f",
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"# Iterate through PNG files in the directory\n",
|
60 |
+
"for png_file in glob.glob(os.path.join(image_directory, '*.png')):\n",
|
61 |
+
" # Open the image\n",
|
62 |
+
" with Image.open(png_file) as img:\n",
|
63 |
+
" # Convert the image to RGB mode in case it's RGBA or P mode\n",
|
64 |
+
" img = img.convert('RGB')\n",
|
65 |
+
" # Define the output filename replacing .png with .jpg\n",
|
66 |
+
" jpg_file = png_file.rsplit('.', 1)[0] + '.jpg'\n",
|
67 |
+
" # Save the image in JPG format\n",
|
68 |
+
" img.save(jpg_file, 'JPEG')\n",
|
69 |
+
" # Optionally, remove the original PNG file\n",
|
70 |
+
" os.remove(png_file)\n"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"id": "32bfb9cc",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": []
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"id": "3648a9fc",
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": []
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": null,
|
92 |
+
"id": "09f74cbd",
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"\n"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 4,
|
102 |
+
"id": "d2e18c17",
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"\n"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": null,
|
112 |
+
"id": "354fda37",
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [],
|
115 |
+
"source": []
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": null,
|
120 |
+
"id": "ac4e5911",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": []
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"metadata": {
|
127 |
+
"kernelspec": {
|
128 |
+
"display_name": "Python 3 (ipykernel)",
|
129 |
+
"language": "python",
|
130 |
+
"name": "python3"
|
131 |
+
},
|
132 |
+
"language_info": {
|
133 |
+
"codemirror_mode": {
|
134 |
+
"name": "ipython",
|
135 |
+
"version": 3
|
136 |
+
},
|
137 |
+
"file_extension": ".py",
|
138 |
+
"mimetype": "text/x-python",
|
139 |
+
"name": "python",
|
140 |
+
"nbconvert_exporter": "python",
|
141 |
+
"pygments_lexer": "ipython3",
|
142 |
+
"version": "3.10.9"
|
143 |
+
}
|
144 |
+
},
|
145 |
+
"nbformat": 4,
|
146 |
+
"nbformat_minor": 5
|
147 |
+
}
|
app.py
CHANGED
@@ -185,39 +185,10 @@ def load_model_components(file_path):
|
|
185 |
model_components['row_to_tag'] = {idx: tag for tag, idx in model_components['tag_to_row_index'].items()}
|
186 |
|
187 |
return model_components
|
|
|
188 |
# Load all components at the start
|
189 |
tf_idf_components = load_model_components('tf_idf_files_420.joblib')
|
190 |
|
191 |
-
# Load the model and data once at startup
|
192 |
-
with h5py.File('complete_artist_data.hdf5', 'r') as f:
|
193 |
-
# Deserialize the vectorizer
|
194 |
-
vectorizer_bytes = f['vectorizer'][()].tobytes()
|
195 |
-
# Use io.BytesIO to convert bytes back to a file-like object for joblib to load
|
196 |
-
vectorizer_buffer = BytesIO(vectorizer_bytes)
|
197 |
-
vectorizer = load(vectorizer_buffer)
|
198 |
-
|
199 |
-
# Load X_artist
|
200 |
-
X_artist = f['X_artist'][:]
|
201 |
-
# Load artist names and decode to strings
|
202 |
-
artist_names = [name.decode() for name in f['artist_names'][:]]
|
203 |
-
|
204 |
-
|
205 |
-
with h5py.File('conditional_tag_probabilities_matrix.h5', 'r') as f:
|
206 |
-
# Reconstruct the sparse co-occurrence matrix
|
207 |
-
conditional_co_occurrence_matrix = csr_matrix(
|
208 |
-
(f['co_occurrence_data'][:], f['co_occurrence_indices'][:], f['co_occurrence_indptr'][:]),
|
209 |
-
shape=f['co_occurrence_shape'][:]
|
210 |
-
)
|
211 |
-
|
212 |
-
# Reconstruct the vocabulary
|
213 |
-
conditional_words = f['vocabulary_words'][:]
|
214 |
-
conditional_indices = f['vocabulary_indices'][:]
|
215 |
-
conditional_vocabulary = {key.decode('utf-8'): value for key, value in zip(conditional_words, conditional_indices)}
|
216 |
-
|
217 |
-
# Load the document count
|
218 |
-
conditional_doc_count = f['doc_count'][()]
|
219 |
-
conditional_smoothing = 100. / conditional_doc_count
|
220 |
-
|
221 |
|
222 |
nsfw_tags = set() # Initialize an empty set to store words meeting the threshold
|
223 |
# Open and read the CSV file
|
@@ -349,50 +320,6 @@ def build_tag_id_wiki_dict(filename='wiki_pages-2023-08-08.csv'):
|
|
349 |
|
350 |
return tag_data
|
351 |
|
352 |
-
|
353 |
-
#Imagine we are adding smoothing_value to the number of times word_j occurs in each document for smoothing.
|
354 |
-
#Note the intention is that sum_i(P(word_i|word_j)) =(approx) # of words in a document rather than 1.
|
355 |
-
def conditional_probability(word_i, word_j, co_occurrence_matrix, vocabulary, doc_count, smoothing_value=0.01):
|
356 |
-
word_i_index = vocabulary.get(word_i)
|
357 |
-
word_j_index = vocabulary.get(word_j)
|
358 |
-
|
359 |
-
if word_i_index is not None and word_j_index is not None:
|
360 |
-
# Directly access the sparse matrix elements
|
361 |
-
word_j_count = co_occurrence_matrix[word_j_index, word_j_index]
|
362 |
-
smoothed_word_j_count = word_j_count + (smoothing_value * doc_count)
|
363 |
-
|
364 |
-
word_i_count = co_occurrence_matrix[word_i_index, word_i_index]
|
365 |
-
|
366 |
-
co_occurrence_count = co_occurrence_matrix[word_i_index, word_j_index]
|
367 |
-
smoothed_co_occurrence_count = co_occurrence_count + (smoothing_value * word_i_count)
|
368 |
-
|
369 |
-
# Calculate the conditional probability with smoothing
|
370 |
-
conditional_prob = smoothed_co_occurrence_count / smoothed_word_j_count
|
371 |
-
|
372 |
-
return conditional_prob
|
373 |
-
elif word_i_index is None:
|
374 |
-
return 0
|
375 |
-
else:
|
376 |
-
return None
|
377 |
-
|
378 |
-
|
379 |
-
def geometric_mean_given_words(target_word, context_words, co_occurrence_matrix, vocabulary, doc_count, smoothing_value=0.01):
|
380 |
-
probabilities = []
|
381 |
-
|
382 |
-
# Collect the conditional probabilities of the target word given each context word, ignoring None values
|
383 |
-
for context_word in context_words:
|
384 |
-
prob = conditional_probability(target_word, context_word, co_occurrence_matrix, vocabulary, doc_count, smoothing_value)
|
385 |
-
if prob is not None:
|
386 |
-
probabilities.append(prob)
|
387 |
-
|
388 |
-
# Compute the geometric mean of the probabilities, avoiding division by zero
|
389 |
-
if probabilities: # Check if the list is not empty
|
390 |
-
geometric_mean = np.prod(probabilities) ** (1.0 / len(probabilities))
|
391 |
-
else:
|
392 |
-
geometric_mean = 0.5 # Or assign some default value if all probabilities are None
|
393 |
-
|
394 |
-
return geometric_mean
|
395 |
-
|
396 |
|
397 |
def create_html_tables_for_tags(subtable_heading, word_similarity_tuples, tag2count, tag2idwiki):
|
398 |
# Wrap the tag part in a <span> with styles for bold and larger font
|
@@ -511,7 +438,7 @@ def create_html_placeholder(title="", content="", placeholder_height=400, placeh
|
|
511 |
return html_placeholder
|
512 |
|
513 |
|
514 |
-
def find_similar_tags(test_tags,
|
515 |
#Initialize stuff
|
516 |
if not hasattr(find_similar_tags, "fasttext_small_model"):
|
517 |
find_similar_tags.fasttext_small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load('e621FastTextModel010Replacement_small.bin')
|
@@ -584,10 +511,8 @@ def find_similar_tags(test_tags, similarity_weight, allow_nsfw_tags):
|
|
584 |
#Adjust score based on context
|
585 |
for i in range(len(result)):
|
586 |
word, score = result[i] # Unpack the tuple
|
587 |
-
|
588 |
-
|
589 |
-
result[i] = (word, adjusted_score) # Update the tuple with the adjusted score
|
590 |
-
#print(word, score, geometric_mean, adjusted_score)
|
591 |
|
592 |
result = sorted(result, key=lambda x: x[1], reverse=True)[:10]
|
593 |
html_content += create_html_tables_for_tags(modified_tag, result, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
|
@@ -650,32 +575,30 @@ def augment_bad_entities_with_regex(text):
|
|
650 |
return bad_entities
|
651 |
|
652 |
|
653 |
-
def find_similar_artists(original_tags_string, top_n,
|
654 |
try:
|
655 |
new_tags_string = original_tags_string.lower()
|
656 |
new_tags_string, removed_tags = remove_special_tags(new_tags_string)
|
657 |
|
658 |
# Parse the prompt
|
659 |
parsed = parser.parse(new_tags_string)
|
660 |
-
|
661 |
# Extract tags from the parsed tree
|
662 |
new_image_tags = extract_tags(parsed)
|
663 |
-
|
664 |
tag_data = build_tag_offsets_dicts(new_image_tags)
|
665 |
-
|
666 |
-
|
667 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
|
669 |
#Bad tags stuff
|
670 |
bad_entities.extend(augment_bad_entities_with_regex(new_tags_string))
|
671 |
bad_entities.sort(key=lambda x: x['start'])
|
672 |
bad_tags_illustrated_string = {"text":new_tags_string, "entities":bad_entities}
|
673 |
-
|
674 |
-
#Suggested tags stuff
|
675 |
-
suggested_tags_html_content = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
|
676 |
-
|
677 |
-
suggested_tags_html_content += "<h1>Suggested Tags</h1>" # Heading for the table
|
678 |
-
suggested_tags = get_tfidf_reduced_similar_tags([item["tf_idf_matrix_tag"] for item in tag_data] + removed_tags, allow_nsfw_tags)
|
679 |
|
680 |
# Create a set of tags that should be filtered out
|
681 |
filter_tags = {entry["original_tag"].strip() for entry in tag_data}
|
@@ -690,13 +613,6 @@ def find_similar_artists(original_tags_string, top_n, similarity_weight, allow_n
|
|
690 |
suggested_tags_html_content += create_html_tables_for_tags("Suggested Tag", topnsuggestions, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
|
691 |
|
692 |
#Artist stuff
|
693 |
-
#artist_matrix_tags = [tag_info['artist_matrix_tag'] for tag_info in tag_data if tag_info['node_type'] == "tag"]
|
694 |
-
#X_new_image = vectorizer.transform([','.join(artist_matrix_tags + removed_tags)])
|
695 |
-
#similarities = cosine_similarity(X_new_image, X_artist)[0]
|
696 |
-
#
|
697 |
-
#top_artist_indices = np.argsort(similarities)[-(top_n + 1):][::-1]
|
698 |
-
#top_artists = [(artist_names[i], similarities[i]) for i in top_artist_indices if artist_names[i].lower() != "by conditional dnp"][:top_n]
|
699 |
-
|
700 |
excluded_artists = ["by conditional dnp", "by unknown artist"]
|
701 |
top_artists = [(key, value) for key, value in suggested_artist_tags_filtered.items() if key.lower() not in excluded_artists][:top_n]
|
702 |
top_artists_str = create_top_artists_table(top_artists)
|
@@ -737,7 +653,7 @@ with gr.Blocks(css=css) as app:
|
|
737 |
with gr.Column(scale=3):
|
738 |
with gr.Group():
|
739 |
with gr.Row():
|
740 |
-
|
741 |
allow_nsfw = gr.Checkbox(label="Allow NSFW Tags", value=False)
|
742 |
with gr.Row():
|
743 |
with gr.Column(scale=2):
|
@@ -759,7 +675,7 @@ with gr.Blocks(css=css) as app:
|
|
759 |
|
760 |
submit_button.click(
|
761 |
find_similar_artists,
|
762 |
-
inputs=[image_tags, num_artists,
|
763 |
outputs=[unseen_tags, bad_tags_illustrated_string, suggested_tags, top_artists, dynamic_prompts] + galleries
|
764 |
)
|
765 |
|
|
|
185 |
model_components['row_to_tag'] = {idx: tag for tag, idx in model_components['tag_to_row_index'].items()}
|
186 |
|
187 |
return model_components
|
188 |
+
|
189 |
# Load all components at the start
|
190 |
tf_idf_components = load_model_components('tf_idf_files_420.joblib')
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
nsfw_tags = set() # Initialize an empty set to store words meeting the threshold
|
194 |
# Open and read the CSV file
|
|
|
320 |
|
321 |
return tag_data
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
def create_html_tables_for_tags(subtable_heading, word_similarity_tuples, tag2count, tag2idwiki):
|
325 |
# Wrap the tag part in a <span> with styles for bold and larger font
|
|
|
438 |
return html_placeholder
|
439 |
|
440 |
|
441 |
+
def find_similar_tags(test_tags, tag_to_context_similarity, context_similarity_weight, allow_nsfw_tags):
|
442 |
#Initialize stuff
|
443 |
if not hasattr(find_similar_tags, "fasttext_small_model"):
|
444 |
find_similar_tags.fasttext_small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load('e621FastTextModel010Replacement_small.bin')
|
|
|
511 |
#Adjust score based on context
|
512 |
for i in range(len(result)):
|
513 |
word, score = result[i] # Unpack the tuple
|
514 |
+
context_score = tag_to_context_similarity.get(word,0)
|
515 |
+
result[i] = (word, .5 * ((context_similarity_weight * context_score) + ((1 - context_similarity_weight) * score)))
|
|
|
|
|
516 |
|
517 |
result = sorted(result, key=lambda x: x[1], reverse=True)[:10]
|
518 |
html_content += create_html_tables_for_tags(modified_tag, result, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
|
|
|
575 |
return bad_entities
|
576 |
|
577 |
|
578 |
+
def find_similar_artists(original_tags_string, top_n, context_similarity_weight, allow_nsfw_tags):
|
579 |
try:
|
580 |
new_tags_string = original_tags_string.lower()
|
581 |
new_tags_string, removed_tags = remove_special_tags(new_tags_string)
|
582 |
|
583 |
# Parse the prompt
|
584 |
parsed = parser.parse(new_tags_string)
|
|
|
585 |
# Extract tags from the parsed tree
|
586 |
new_image_tags = extract_tags(parsed)
|
|
|
587 |
tag_data = build_tag_offsets_dicts(new_image_tags)
|
588 |
+
|
589 |
+
#Suggested tags stuff
|
590 |
+
suggested_tags_html_content = "<div class=\"scrollable-content\" style='display: inline-block; margin: 20px; text-align: center;'>"
|
591 |
+
suggested_tags_html_content += "<h1>Suggested Tags</h1>" # Heading for the table
|
592 |
+
suggested_tags = get_tfidf_reduced_similar_tags([item["tf_idf_matrix_tag"] for item in tag_data] + removed_tags, allow_nsfw_tags)
|
593 |
+
|
594 |
+
|
595 |
+
unseen_tags_data, bad_entities = find_similar_tags(tag_data, suggested_tags, context_similarity_weight, allow_nsfw_tags)
|
596 |
+
|
597 |
|
598 |
#Bad tags stuff
|
599 |
bad_entities.extend(augment_bad_entities_with_regex(new_tags_string))
|
600 |
bad_entities.sort(key=lambda x: x['start'])
|
601 |
bad_tags_illustrated_string = {"text":new_tags_string, "entities":bad_entities}
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
|
603 |
# Create a set of tags that should be filtered out
|
604 |
filter_tags = {entry["original_tag"].strip() for entry in tag_data}
|
|
|
613 |
suggested_tags_html_content += create_html_tables_for_tags("Suggested Tag", topnsuggestions, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
|
614 |
|
615 |
#Artist stuff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
excluded_artists = ["by conditional dnp", "by unknown artist"]
|
617 |
top_artists = [(key, value) for key, value in suggested_artist_tags_filtered.items() if key.lower() not in excluded_artists][:top_n]
|
618 |
top_artists_str = create_top_artists_table(top_artists)
|
|
|
653 |
with gr.Column(scale=3):
|
654 |
with gr.Group():
|
655 |
with gr.Row():
|
656 |
+
context_similarity_weight = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Context Similarity Weight")
|
657 |
allow_nsfw = gr.Checkbox(label="Allow NSFW Tags", value=False)
|
658 |
with gr.Row():
|
659 |
with gr.Column(scale=2):
|
|
|
675 |
|
676 |
submit_button.click(
|
677 |
find_similar_artists,
|
678 |
+
inputs=[image_tags, num_artists, context_similarity_weight, allow_nsfw],
|
679 |
outputs=[unseen_tags, bad_tags_illustrated_string, suggested_tags, top_artists, dynamic_prompts] + galleries
|
680 |
)
|
681 |
|