# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. # %% auto 0 __all__ = ['learner', 'cats', 'img', 'lbl', 'examples', 'title', 'description', 'article', 'interface', 'classify_img'] # %% app.ipynb 3 from fastai.vision.all import * import gradio as gr # %% app.ipynb 6 learner = load_learner('model/export.pkl') # %% app.ipynb 9 cats = ('Black Bear', 'Grizzly Bear', 'Teddy Bear',) def classify_img(img): preds, idx, probs = learner.predict(img) return dict(zip(cats, map(float, probs))) # %% app.ipynb 12 img = gr.Image() lbl = gr.Label() examples = [str(img_path) for img_path in Path('example_images/').rglob('*.jpg')] title = 'Bear Classifier' description = 'My first AI model that can tell you whether an image contains a grizzly bear, a black bear, or a teddy bear. This model was trained on the ' \ 'ResNet18 architecture and used the fastai library.' article = "

" # %% app.ipynb 15 interface = gr.Interface( fn=classify_img, inputs='image', outputs='label', examples=examples, title=title, description=description, article=article ) interface.launch(inline=False, enable_queue=True)