Spaces:
Runtime error
Runtime error
Salman Naqvi
commited on
Commit
·
be341a6
1
Parent(s):
a12ccf4
Readded blog post link.
Browse files- .idea/FloodDetector.iml +8 -0
- .idea/discord.xml +7 -0
- .idea/modules.xml +8 -0
- app.ipynb +110 -101
- app.py +3 -2
.idea/FloodDetector.iml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="inheritedJdk" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
</module>
|
.idea/discord.xml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="DiscordProjectSettings">
|
4 |
+
<option name="show" value="ASK" />
|
5 |
+
<option name="description" value="" />
|
6 |
+
</component>
|
7 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/FloodDetector.iml" filepath="$PROJECT_DIR$/.idea/FloodDetector.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
app.ipynb
CHANGED
@@ -2,40 +2,54 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
-
"metadata": {
|
7 |
-
"collapsed": true
|
8 |
-
},
|
9 |
"outputs": [],
|
10 |
"source": [
|
11 |
"#|default_exp app"
|
12 |
-
]
|
|
|
|
|
|
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "markdown",
|
16 |
-
"source": [
|
17 |
-
"# Flood or no flood?"
|
18 |
-
],
|
19 |
"metadata": {
|
20 |
"collapsed": false
|
21 |
-
}
|
|
|
|
|
|
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
"execution_count": 2,
|
26 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"source": [
|
28 |
"#|export\n",
|
29 |
"import gradio as gr\n",
|
30 |
"from fastai.vision.all import *"
|
31 |
-
]
|
32 |
-
"metadata": {
|
33 |
-
"collapsed": false
|
34 |
-
}
|
35 |
},
|
36 |
{
|
37 |
"cell_type": "code",
|
38 |
"execution_count": 3,
|
|
|
|
|
|
|
39 |
"outputs": [
|
40 |
{
|
41 |
"data": {
|
@@ -49,36 +63,36 @@
|
|
49 |
],
|
50 |
"source": [
|
51 |
"image = PILImage.create('images/test_images/1.jpeg'); image"
|
52 |
-
]
|
53 |
-
"metadata": {
|
54 |
-
"collapsed": false
|
55 |
-
}
|
56 |
},
|
57 |
{
|
58 |
"cell_type": "markdown",
|
59 |
-
"source": [
|
60 |
-
"## Create learner."
|
61 |
-
],
|
62 |
"metadata": {
|
63 |
"collapsed": false
|
64 |
-
}
|
|
|
|
|
|
|
65 |
},
|
66 |
{
|
67 |
"cell_type": "code",
|
68 |
"execution_count": 4,
|
|
|
|
|
|
|
69 |
"outputs": [],
|
70 |
"source": [
|
71 |
"#|export\n",
|
72 |
"\n",
|
73 |
"learner = load_learner('model/flood_classifier.pkl')"
|
74 |
-
]
|
75 |
-
"metadata": {
|
76 |
-
"collapsed": false
|
77 |
-
}
|
78 |
},
|
79 |
{
|
80 |
"cell_type": "code",
|
81 |
"execution_count": 5,
|
|
|
|
|
|
|
82 |
"outputs": [
|
83 |
{
|
84 |
"data": {
|
@@ -107,23 +121,23 @@
|
|
107 |
],
|
108 |
"source": [
|
109 |
"learner.predict(image)"
|
110 |
-
]
|
111 |
-
"metadata": {
|
112 |
-
"collapsed": false
|
113 |
-
}
|
114 |
},
|
115 |
{
|
116 |
"cell_type": "markdown",
|
117 |
-
"source": [
|
118 |
-
"## Create classification function."
|
119 |
-
],
|
120 |
"metadata": {
|
121 |
"collapsed": false
|
122 |
-
}
|
|
|
|
|
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
126 |
"execution_count": 6,
|
|
|
|
|
|
|
127 |
"outputs": [],
|
128 |
"source": [
|
129 |
"#|export\n",
|
@@ -133,14 +147,14 @@
|
|
133 |
"def classify_image(image):\n",
|
134 |
" prediction, index, probabilities = learner.predict(image)\n",
|
135 |
" return dict(zip(categories, map(float, probabilities)))"
|
136 |
-
]
|
137 |
-
"metadata": {
|
138 |
-
"collapsed": false
|
139 |
-
}
|
140 |
},
|
141 |
{
|
142 |
"cell_type": "code",
|
143 |
"execution_count": 7,
|
|
|
|
|
|
|
144 |
"outputs": [
|
145 |
{
|
146 |
"data": {
|
@@ -169,23 +183,23 @@
|
|
169 |
],
|
170 |
"source": [
|
171 |
"classify_image(PILImage.create('images/example_images/flooded/1.jpeg'))"
|
172 |
-
]
|
173 |
-
"metadata": {
|
174 |
-
"collapsed": false
|
175 |
-
}
|
176 |
},
|
177 |
{
|
178 |
"cell_type": "markdown",
|
179 |
-
"source": [
|
180 |
-
"## Intialize attributes for the interface."
|
181 |
-
],
|
182 |
"metadata": {
|
183 |
"collapsed": false
|
184 |
-
}
|
|
|
|
|
|
|
185 |
},
|
186 |
{
|
187 |
"cell_type": "code",
|
188 |
-
"execution_count":
|
|
|
|
|
|
|
189 |
"outputs": [],
|
190 |
"source": [
|
191 |
"#|export\n",
|
@@ -202,18 +216,17 @@
|
|
202 |
" \" This model was trained on the ResNet18 architecture and the \" \\\n",
|
203 |
" \"fastai library.\" \\\n",
|
204 |
" \" Check out the associated blog post with the link below!\"\n",
|
205 |
-
"article = \"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
|
209 |
-
],
|
210 |
-
"metadata": {
|
211 |
-
"collapsed": false
|
212 |
-
}
|
213 |
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
"execution_count": 9,
|
|
|
|
|
|
|
217 |
"outputs": [
|
218 |
{
|
219 |
"data": {
|
@@ -226,40 +239,34 @@
|
|
226 |
],
|
227 |
"source": [
|
228 |
"examples"
|
229 |
-
]
|
230 |
-
"metadata": {
|
231 |
-
"collapsed": false
|
232 |
-
}
|
233 |
},
|
234 |
{
|
235 |
"cell_type": "markdown",
|
236 |
-
"source": [
|
237 |
-
"## Create the interface."
|
238 |
-
],
|
239 |
"metadata": {
|
240 |
"collapsed": false
|
241 |
-
}
|
|
|
|
|
|
|
242 |
},
|
243 |
{
|
244 |
"cell_type": "code",
|
245 |
-
"execution_count":
|
|
|
|
|
|
|
246 |
"outputs": [
|
247 |
{
|
248 |
-
"
|
249 |
-
"
|
250 |
-
"
|
251 |
-
|
252 |
-
"\
|
253 |
-
"
|
|
|
|
|
254 |
]
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"data": {
|
258 |
-
"text/plain": "(<gradio.routes.App at 0x29d4a8040>, 'http://127.0.0.1:7869/', None)"
|
259 |
-
},
|
260 |
-
"execution_count": 28,
|
261 |
-
"metadata": {},
|
262 |
-
"output_type": "execute_result"
|
263 |
}
|
264 |
],
|
265 |
"source": [
|
@@ -270,55 +277,52 @@
|
|
270 |
" examples=examples, title=title,\n",
|
271 |
" description=description, article=article)\n",
|
272 |
"interface.launch(inline=False, enable_queue=True)"
|
273 |
-
]
|
274 |
-
"metadata": {
|
275 |
-
"collapsed": false
|
276 |
-
}
|
277 |
},
|
278 |
{
|
279 |
"cell_type": "markdown",
|
280 |
-
"source": [
|
281 |
-
"## Export"
|
282 |
-
],
|
283 |
"metadata": {
|
284 |
"collapsed": false
|
285 |
-
}
|
|
|
|
|
|
|
286 |
},
|
287 |
{
|
288 |
"cell_type": "code",
|
289 |
-
"execution_count":
|
|
|
|
|
|
|
290 |
"outputs": [],
|
291 |
"source": [
|
292 |
"from nbdev.export import nb_export"
|
293 |
-
]
|
294 |
-
"metadata": {
|
295 |
-
"collapsed": false
|
296 |
-
}
|
297 |
},
|
298 |
{
|
299 |
"cell_type": "code",
|
300 |
-
"execution_count":
|
|
|
|
|
|
|
301 |
"outputs": [],
|
302 |
"source": [
|
303 |
"nb_export('app.ipynb', '.')"
|
304 |
-
]
|
305 |
-
"metadata": {
|
306 |
-
"collapsed": false
|
307 |
-
}
|
308 |
},
|
309 |
{
|
310 |
"cell_type": "code",
|
311 |
"execution_count": 12,
|
312 |
-
"outputs": [],
|
313 |
-
"source": [],
|
314 |
"metadata": {
|
315 |
"collapsed": false
|
316 |
-
}
|
|
|
|
|
317 |
}
|
318 |
],
|
319 |
"metadata": {
|
320 |
"kernelspec": {
|
321 |
-
"display_name": "Python 3",
|
322 |
"language": "python",
|
323 |
"name": "python3"
|
324 |
},
|
@@ -332,7 +336,12 @@
|
|
332 |
"name": "python",
|
333 |
"nbconvert_exporter": "python",
|
334 |
"pygments_lexer": "ipython2",
|
335 |
-
"version": "
|
|
|
|
|
|
|
|
|
|
|
336 |
}
|
337 |
},
|
338 |
"nbformat": 4,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
|
|
|
|
|
|
6 |
"outputs": [],
|
7 |
"source": [
|
8 |
"#|default_exp app"
|
9 |
+
],
|
10 |
+
"metadata": {
|
11 |
+
"collapsed": false
|
12 |
+
}
|
13 |
},
|
14 |
{
|
15 |
"cell_type": "markdown",
|
|
|
|
|
|
|
16 |
"metadata": {
|
17 |
"collapsed": false
|
18 |
+
},
|
19 |
+
"source": [
|
20 |
+
"# Flood or no flood?"
|
21 |
+
]
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
"execution_count": 2,
|
26 |
+
"metadata": {
|
27 |
+
"collapsed": false
|
28 |
+
},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"name": "stderr",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"/Users/salmannaqvi/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: dlopen(/Users/salmannaqvi/lib/python3.10/site-packages/torchvision/image.so, 0x0006): Symbol not found: (__ZN2at4_ops19empty_memory_format4callEN3c108ArrayRefINS2_6SymIntEEENS2_8optionalINS2_10ScalarTypeEEENS6_INS2_6LayoutEEENS6_INS2_6DeviceEEENS6_IbEENS6_INS2_12MemoryFormatEEE)\n",
|
35 |
+
" Referenced from: '/Users/salmannaqvi/lib/python3.10/site-packages/torchvision/image.so'\n",
|
36 |
+
" Expected in: '/Users/salmannaqvi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.dylib'\n",
|
37 |
+
" warn(f\"Failed to load image Python extension: {e}\")\n"
|
38 |
+
]
|
39 |
+
}
|
40 |
+
],
|
41 |
"source": [
|
42 |
"#|export\n",
|
43 |
"import gradio as gr\n",
|
44 |
"from fastai.vision.all import *"
|
45 |
+
]
|
|
|
|
|
|
|
46 |
},
|
47 |
{
|
48 |
"cell_type": "code",
|
49 |
"execution_count": 3,
|
50 |
+
"metadata": {
|
51 |
+
"collapsed": false
|
52 |
+
},
|
53 |
"outputs": [
|
54 |
{
|
55 |
"data": {
|
|
|
63 |
],
|
64 |
"source": [
|
65 |
"image = PILImage.create('images/test_images/1.jpeg'); image"
|
66 |
+
]
|
|
|
|
|
|
|
67 |
},
|
68 |
{
|
69 |
"cell_type": "markdown",
|
|
|
|
|
|
|
70 |
"metadata": {
|
71 |
"collapsed": false
|
72 |
+
},
|
73 |
+
"source": [
|
74 |
+
"## Create learner."
|
75 |
+
]
|
76 |
},
|
77 |
{
|
78 |
"cell_type": "code",
|
79 |
"execution_count": 4,
|
80 |
+
"metadata": {
|
81 |
+
"collapsed": false
|
82 |
+
},
|
83 |
"outputs": [],
|
84 |
"source": [
|
85 |
"#|export\n",
|
86 |
"\n",
|
87 |
"learner = load_learner('model/flood_classifier.pkl')"
|
88 |
+
]
|
|
|
|
|
|
|
89 |
},
|
90 |
{
|
91 |
"cell_type": "code",
|
92 |
"execution_count": 5,
|
93 |
+
"metadata": {
|
94 |
+
"collapsed": false
|
95 |
+
},
|
96 |
"outputs": [
|
97 |
{
|
98 |
"data": {
|
|
|
121 |
],
|
122 |
"source": [
|
123 |
"learner.predict(image)"
|
124 |
+
]
|
|
|
|
|
|
|
125 |
},
|
126 |
{
|
127 |
"cell_type": "markdown",
|
|
|
|
|
|
|
128 |
"metadata": {
|
129 |
"collapsed": false
|
130 |
+
},
|
131 |
+
"source": [
|
132 |
+
"## Create classification function."
|
133 |
+
]
|
134 |
},
|
135 |
{
|
136 |
"cell_type": "code",
|
137 |
"execution_count": 6,
|
138 |
+
"metadata": {
|
139 |
+
"collapsed": false
|
140 |
+
},
|
141 |
"outputs": [],
|
142 |
"source": [
|
143 |
"#|export\n",
|
|
|
147 |
"def classify_image(image):\n",
|
148 |
" prediction, index, probabilities = learner.predict(image)\n",
|
149 |
" return dict(zip(categories, map(float, probabilities)))"
|
150 |
+
]
|
|
|
|
|
|
|
151 |
},
|
152 |
{
|
153 |
"cell_type": "code",
|
154 |
"execution_count": 7,
|
155 |
+
"metadata": {
|
156 |
+
"collapsed": false
|
157 |
+
},
|
158 |
"outputs": [
|
159 |
{
|
160 |
"data": {
|
|
|
183 |
],
|
184 |
"source": [
|
185 |
"classify_image(PILImage.create('images/example_images/flooded/1.jpeg'))"
|
186 |
+
]
|
|
|
|
|
|
|
187 |
},
|
188 |
{
|
189 |
"cell_type": "markdown",
|
|
|
|
|
|
|
190 |
"metadata": {
|
191 |
"collapsed": false
|
192 |
+
},
|
193 |
+
"source": [
|
194 |
+
"## Intialize attributes for the interface."
|
195 |
+
]
|
196 |
},
|
197 |
{
|
198 |
"cell_type": "code",
|
199 |
+
"execution_count": 8,
|
200 |
+
"metadata": {
|
201 |
+
"collapsed": false
|
202 |
+
},
|
203 |
"outputs": [],
|
204 |
"source": [
|
205 |
"#|export\n",
|
|
|
216 |
" \" This model was trained on the ResNet18 architecture and the \" \\\n",
|
217 |
" \"fastai library.\" \\\n",
|
218 |
" \" Check out the associated blog post with the link below!\"\n",
|
219 |
+
"article = \"\"\"\n",
|
220 |
+
"<p style='text-align: center; font-size: 36px'><a href='https://forbo7.github.io/forblog/posts/5_detecting_floods_for_disaster_relief.html'>Blog Post</a></p>\n",
|
221 |
+
"\"\"\""
|
222 |
+
]
|
|
|
|
|
|
|
|
|
223 |
},
|
224 |
{
|
225 |
"cell_type": "code",
|
226 |
"execution_count": 9,
|
227 |
+
"metadata": {
|
228 |
+
"collapsed": false
|
229 |
+
},
|
230 |
"outputs": [
|
231 |
{
|
232 |
"data": {
|
|
|
239 |
],
|
240 |
"source": [
|
241 |
"examples"
|
242 |
+
]
|
|
|
|
|
|
|
243 |
},
|
244 |
{
|
245 |
"cell_type": "markdown",
|
|
|
|
|
|
|
246 |
"metadata": {
|
247 |
"collapsed": false
|
248 |
+
},
|
249 |
+
"source": [
|
250 |
+
"## Create the interface."
|
251 |
+
]
|
252 |
},
|
253 |
{
|
254 |
"cell_type": "code",
|
255 |
+
"execution_count": 1,
|
256 |
+
"metadata": {
|
257 |
+
"collapsed": false
|
258 |
+
},
|
259 |
"outputs": [
|
260 |
{
|
261 |
+
"ename": "NameError",
|
262 |
+
"evalue": "name 'gr' is not defined",
|
263 |
+
"output_type": "error",
|
264 |
+
"traceback": [
|
265 |
+
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
|
266 |
+
"\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)",
|
267 |
+
"Cell \u001B[0;32mIn [1], line 4\u001B[0m\n\u001B[1;32m 1\u001B[0m \u001B[38;5;66;03m#|export\u001B[39;00m\n\u001B[1;32m 2\u001B[0m \n\u001B[1;32m 3\u001B[0m \u001B[38;5;66;03m# Perhaps I can make the interface below with **kwargs?\u001B[39;00m\n\u001B[0;32m----> 4\u001B[0m interface \u001B[38;5;241m=\u001B[39m \u001B[43mgr\u001B[49m\u001B[38;5;241m.\u001B[39mInterface(fn\u001B[38;5;241m=\u001B[39mclassify_image, inputs\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mimage\u001B[39m\u001B[38;5;124m'\u001B[39m, outputs\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mlabel\u001B[39m\u001B[38;5;124m'\u001B[39m,\n\u001B[1;32m 5\u001B[0m examples\u001B[38;5;241m=\u001B[39mexamples, title\u001B[38;5;241m=\u001B[39mtitle,\n\u001B[1;32m 6\u001B[0m description\u001B[38;5;241m=\u001B[39mdescription, article\u001B[38;5;241m=\u001B[39marticle)\n\u001B[1;32m 7\u001B[0m interface\u001B[38;5;241m.\u001B[39mlaunch(inline\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m, enable_queue\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mTrue\u001B[39;00m)\n",
|
268 |
+
"\u001B[0;31mNameError\u001B[0m: name 'gr' is not defined"
|
269 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
}
|
271 |
],
|
272 |
"source": [
|
|
|
277 |
" examples=examples, title=title,\n",
|
278 |
" description=description, article=article)\n",
|
279 |
"interface.launch(inline=False, enable_queue=True)"
|
280 |
+
]
|
|
|
|
|
|
|
281 |
},
|
282 |
{
|
283 |
"cell_type": "markdown",
|
|
|
|
|
|
|
284 |
"metadata": {
|
285 |
"collapsed": false
|
286 |
+
},
|
287 |
+
"source": [
|
288 |
+
"## Export"
|
289 |
+
]
|
290 |
},
|
291 |
{
|
292 |
"cell_type": "code",
|
293 |
+
"execution_count": 2,
|
294 |
+
"metadata": {
|
295 |
+
"collapsed": false
|
296 |
+
},
|
297 |
"outputs": [],
|
298 |
"source": [
|
299 |
"from nbdev.export import nb_export"
|
300 |
+
]
|
|
|
|
|
|
|
301 |
},
|
302 |
{
|
303 |
"cell_type": "code",
|
304 |
+
"execution_count": 3,
|
305 |
+
"metadata": {
|
306 |
+
"collapsed": false
|
307 |
+
},
|
308 |
"outputs": [],
|
309 |
"source": [
|
310 |
"nb_export('app.ipynb', '.')"
|
311 |
+
]
|
|
|
|
|
|
|
312 |
},
|
313 |
{
|
314 |
"cell_type": "code",
|
315 |
"execution_count": 12,
|
|
|
|
|
316 |
"metadata": {
|
317 |
"collapsed": false
|
318 |
+
},
|
319 |
+
"outputs": [],
|
320 |
+
"source": []
|
321 |
}
|
322 |
],
|
323 |
"metadata": {
|
324 |
"kernelspec": {
|
325 |
+
"display_name": "Python 3.10.7 ('salmannaqvi')",
|
326 |
"language": "python",
|
327 |
"name": "python3"
|
328 |
},
|
|
|
336 |
"name": "python",
|
337 |
"nbconvert_exporter": "python",
|
338 |
"pygments_lexer": "ipython2",
|
339 |
+
"version": "3.10.7"
|
340 |
+
},
|
341 |
+
"vscode": {
|
342 |
+
"interpreter": {
|
343 |
+
"hash": "e2325d4fde750cacac60ba4c06f149a07b5aad47b4e6bf1c4dca1c7b2184bba3"
|
344 |
+
}
|
345 |
}
|
346 |
},
|
347 |
"nbformat": 4,
|
app.py
CHANGED
@@ -31,8 +31,9 @@ description = "An image classifier that can tell whether an image is flooded " \
|
|
31 |
" This model was trained on the ResNet18 architecture and the " \
|
32 |
"fastai library." \
|
33 |
" Check out the associated blog post with the link below!"
|
34 |
-
article = "
|
35 |
-
|
|
|
36 |
|
37 |
# %% app.ipynb 14
|
38 |
# Perhaps I can make the interface below with **kwargs?
|
|
|
31 |
" This model was trained on the ResNet18 architecture and the " \
|
32 |
"fastai library." \
|
33 |
" Check out the associated blog post with the link below!"
|
34 |
+
article = """
|
35 |
+
<p style='text-align: center; font-size: 36px'><a href='https://forbo7.github.io/forblog/posts/5_detecting_floods_for_disaster_relief.html'>Blog Post</a></p>
|
36 |
+
"""
|
37 |
|
38 |
# %% app.ipynb 14
|
39 |
# Perhaps I can make the interface below with **kwargs?
|