# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. # %% auto 0 __all__ = ['learner', 'categories', 'image', 'label', 'examples', 'title', 'description', 'article', 'interface', 'classify_image'] # %% app.ipynb 2 import gradio as gr from fastai.vision.all import * # %% app.ipynb 5 learner = load_learner('model/flood_classifier.pkl') # %% app.ipynb 8 categories = 'Not Flooded', 'Flooded', def classify_image(image): prediction, index, probabilities = learner.predict(image) return dict(zip(categories, map(float, probabilities))) # %% app.ipynb 11 image = gr.Image() label = gr.Label() examples = [str(image_path) for image_path in Path('images/example_images') .rglob('*.jpeg')] title = 'Flood Classifier' description = "An image classifier that can tell whether an image is flooded " \ "or not. Works well with images that have a top-down/aeiral " \ "view of the land below." \ " This model was trained on the ResNet18 architecture and the " \ "fastai library." \ " Check out the associated blog post with the link below!" article = """
""" # %% app.ipynb 14 # Perhaps I can make the interface below with **kwargs? interface = gr.Interface(fn=classify_image, inputs='image', outputs='label', examples=examples, title=title, description=description, article=article) interface.launch(inline=False, enable_queue=True)