Spaces:
Sleeping
Sleeping
robertselvam
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from io import StringIO
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import xgboost as xgb
|
6 |
+
from math import sqrt
|
7 |
+
from sklearn.metrics import mean_squared_error
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
import plotly.express as px
|
10 |
+
import logging
|
11 |
+
|
12 |
+
from datetime import datetime
|
13 |
+
|
14 |
+
import plotly.graph_objects as go
|
15 |
+
import numpy as np
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
from matplotlib import pyplot
|
18 |
+
import whisper
|
19 |
+
from openai import AzureOpenAI
|
20 |
+
import json
|
21 |
+
import re
|
22 |
+
import gradio as gr
|
23 |
+
|
24 |
+
# Configure logging
|
25 |
+
logging.basicConfig(
|
26 |
+
filename='demand_forecasting.log', # You can adjust the log file name here
|
27 |
+
filemode='a',
|
28 |
+
format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s',
|
29 |
+
datefmt='%Y-%b-%d %H:%M:%S'
|
30 |
+
)
|
31 |
+
LOGGER = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
log_level_env = 'INFO' # You can adjust the log level here
|
34 |
+
log_level_dict = {
|
35 |
+
'DEBUG': logging.DEBUG,
|
36 |
+
'INFO': logging.INFO,
|
37 |
+
'WARNING': logging.WARNING,
|
38 |
+
'ERROR': logging.ERROR,
|
39 |
+
'CRITICAL': logging.CRITICAL
|
40 |
+
}
|
41 |
+
if log_level_env in log_level_dict:
|
42 |
+
log_level = log_level_dict[log_level_env]
|
43 |
+
else:
|
44 |
+
log_level = log_level_dict['INFO']
|
45 |
+
LOGGER.setLevel(log_level)
|
46 |
+
|
47 |
+
class DemandForecasting:
|
48 |
+
def __init__(self):
|
49 |
+
self.client = AzureOpenAI()
|
50 |
+
self.whisper_model = whisper.load_model("medium.en")
|
51 |
+
|
52 |
+
|
53 |
+
def get_column(self,train_csv_path: str):
|
54 |
+
# Load the training data from the specified CSV file
|
55 |
+
train_df = pd.read_csv(train_csv_path)
|
56 |
+
|
57 |
+
column_names = train_df.columns.tolist()
|
58 |
+
return column_names
|
59 |
+
|
60 |
+
def load_data(self, train_csv_path: str) -> pd.DataFrame:
|
61 |
+
"""
|
62 |
+
Load training data from a CSV file.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
train_csv_path (str): Path to the training CSV file.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
pd.DataFrame: DataFrame containing the training data.
|
69 |
+
"""
|
70 |
+
try:
|
71 |
+
# Load the training data from the specified CSV file
|
72 |
+
train_df = pd.read_csv(train_csv_path)
|
73 |
+
|
74 |
+
|
75 |
+
# Return a tuple containing the training DataFrame
|
76 |
+
return train_df
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
# Log an error message if an exception occurs during data loading
|
80 |
+
LOGGER.error(f"Error loading data: {e}")
|
81 |
+
|
82 |
+
# Return None
|
83 |
+
return None
|
84 |
+
|
85 |
+
|
86 |
+
def find_date_column(self, df_data: pd.DataFrame, list_columns: list) -> str:
|
87 |
+
"""
|
88 |
+
Find the column containing date information from the list of columns.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
- df_data (pd.DataFrame): Input DataFrame.
|
92 |
+
- list_columns (list): List of column names to search for date information.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
- str: Name of the column containing date information.
|
96 |
+
"""
|
97 |
+
for column in list_columns:
|
98 |
+
# Check if the column contains date-like values
|
99 |
+
try:
|
100 |
+
pd.to_datetime(df_data[column])
|
101 |
+
return column
|
102 |
+
except ValueError:
|
103 |
+
pass
|
104 |
+
|
105 |
+
# Return None if no date column is found
|
106 |
+
return None
|
107 |
+
|
108 |
+
def preprocess_data(self, df_data: pd.DataFrame, list_columns) -> pd.DataFrame:
|
109 |
+
"""
|
110 |
+
Preprocess the input DataFrame.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
- df_data (pd.DataFrame): Input DataFrame to preprocess.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
- pd.DataFrame: Preprocessed DataFrame.
|
117 |
+
"""
|
118 |
+
try:
|
119 |
+
print(type(list_columns))
|
120 |
+
# Make a copy of the input DataFrame to avoid modifying the original data
|
121 |
+
df_data = df_data.copy()
|
122 |
+
|
123 |
+
list_columns.append(target_column)
|
124 |
+
|
125 |
+
# Drop columns not in list_columns
|
126 |
+
columns_to_drop = [col for col in df_data.columns if col not in list_columns]
|
127 |
+
df_data.drop(columns=columns_to_drop, inplace=True)
|
128 |
+
|
129 |
+
# Find the date column
|
130 |
+
date_column = self.find_date_column(df_data, list_columns)
|
131 |
+
if date_column is None:
|
132 |
+
raise ValueError("No date column found in the provided list of columns.")
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
# Parse date information
|
137 |
+
df_data[date_column] = pd.to_datetime(df_data[date_column]) # Convert 'date' column to datetime format
|
138 |
+
df_data['day'] = df_data[date_column].dt.day # Extract day of the month
|
139 |
+
df_data['month'] = df_data[date_column].dt.month # Extract month
|
140 |
+
df_data['year'] = df_data[date_column].dt.year # Extract year
|
141 |
+
|
142 |
+
# Cyclical Encoding for Months
|
143 |
+
df_data['month_sin'] = np.sin(2 * np.pi * df_data['month'] / 12) # Cyclical sine encoding for month
|
144 |
+
df_data['month_cos'] = np.cos(2 * np.pi * df_data['month'] / 12) # Cyclical cosine encoding for month
|
145 |
+
|
146 |
+
# Day of the Week
|
147 |
+
df_data['day_of_week'] = df_data[date_column].dt.weekday # Extract day of the week (0 = Monday, 6 = Sunday)
|
148 |
+
|
149 |
+
# Week of the Year
|
150 |
+
df_data['week_of_year'] = df_data[date_column].dt.isocalendar().week.astype(int) # Extract week of the year as integer
|
151 |
+
|
152 |
+
df_data.drop(columns=[date_column], inplace=True)
|
153 |
+
|
154 |
+
print("df_data", df_data)
|
155 |
+
return df_data
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
# Log an error message if an exception occurs during data preprocessing
|
159 |
+
LOGGER.error(f"Error preprocessing data: {e}")
|
160 |
+
|
161 |
+
# Return None in case of an error
|
162 |
+
return None
|
163 |
+
|
164 |
+
def train_model(self, train: pd.DataFrame, target_column, list_columns) -> tuple:
|
165 |
+
"""
|
166 |
+
Train an XGBoost model using the provided training data.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
- train (pd.DataFrame): DataFrame containing training data.
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
- tuple: A tuple containing the trained model, true validation labels, and predicted validation labels.
|
173 |
+
"""
|
174 |
+
try:
|
175 |
+
|
176 |
+
# Extract features and target variable
|
177 |
+
X = train.drop(columns=[target_column])
|
178 |
+
y = train[target_column]
|
179 |
+
|
180 |
+
# Cannot use cross validation because it will use future data
|
181 |
+
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=333)
|
182 |
+
|
183 |
+
# Convert data into DMatrix format for XGBoost
|
184 |
+
dtrain = xgb.DMatrix(X_train, label=y_train)
|
185 |
+
dval = xgb.DMatrix(X_val, label=y_val)
|
186 |
+
|
187 |
+
# Parameters for XGBoost
|
188 |
+
param = {
|
189 |
+
'max_depth': 9,
|
190 |
+
'eta': 0.3,
|
191 |
+
'objective': 'reg:squarederror'
|
192 |
+
}
|
193 |
+
|
194 |
+
num_round = 60
|
195 |
+
|
196 |
+
# Train the model
|
197 |
+
model_xgb = xgb.train(param, dtrain, num_round)
|
198 |
+
|
199 |
+
# Validate the model
|
200 |
+
y_val_pred = model_xgb.predict(dval) # Predict validation set labels
|
201 |
+
|
202 |
+
# Calculate mean squared error
|
203 |
+
mse = mean_squared_error(y_val, y_val_pred)
|
204 |
+
|
205 |
+
# Print validation RMSE
|
206 |
+
validation = f"Validation RMSE: {np.sqrt(mse)}"
|
207 |
+
|
208 |
+
# Return trained model, true validation labels, and predicted validation labels
|
209 |
+
return model_xgb, y_val, y_val_pred, validation
|
210 |
+
|
211 |
+
except Exception as e:
|
212 |
+
# Log an error message if an exception occurs during model training
|
213 |
+
LOGGER.error(f"Error training model: {e}")
|
214 |
+
|
215 |
+
# Return None for all outputs in case of an error
|
216 |
+
return None, None, None
|
217 |
+
|
218 |
+
def plot_evaluation_interactive(self, y_true: np.ndarray, y_pred: np.ndarray, title: str) -> None:
|
219 |
+
"""
|
220 |
+
Plot interactive evaluation using Plotly.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
- y_true (np.ndarray): True values.
|
224 |
+
- y_pred (np.ndarray): Predicted values.
|
225 |
+
- title (str): Title of the plot.
|
226 |
+
"""
|
227 |
+
try:
|
228 |
+
# Create a scatter plot using Plotly
|
229 |
+
fig = px.scatter(x=y_true, y=y_pred, labels={'x': 'True Values', 'y': 'Predictions'}, title=title, color_discrete_map={'': 'purple'})
|
230 |
+
fig.show()
|
231 |
+
return fig
|
232 |
+
|
233 |
+
except Exception as e:
|
234 |
+
# Log an error message if an exception occurs during plot generation
|
235 |
+
LOGGER.error(f"Error plotting evaluation: {e}")
|
236 |
+
|
237 |
+
|
238 |
+
def predict_sales_for_date(self, input_data, model: xgb.Booster) -> float:
|
239 |
+
"""
|
240 |
+
Predict the sales for a specific date using the trained model.
|
241 |
+
|
242 |
+
Args:
|
243 |
+
- date_input (str): Date for which sales prediction is needed (in 'YYYY-MM-DD' format).
|
244 |
+
- model (xgb.Booster): Trained XGBoost model.
|
245 |
+
- features (pd.DataFrame): DataFrame containing features for the date.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
- float: Predicted sales value.
|
249 |
+
"""
|
250 |
+
try:
|
251 |
+
input_features = pd.DataFrame([input_data])
|
252 |
+
|
253 |
+
# Regular expression pattern for date in the format 'dd-mm-yyyy'
|
254 |
+
for key, value in input_data.items():
|
255 |
+
if isinstance(value, str) and re.match(r'\d{2}-\d{2}-\d{4}', value):
|
256 |
+
date_column = key
|
257 |
+
|
258 |
+
if date_column:
|
259 |
+
# # Assuming date_input is a datetime object
|
260 |
+
date_input = pd.to_datetime(input_features[date_column])
|
261 |
+
|
262 |
+
# Extract day of the month
|
263 |
+
input_features['day'] = date_input.dt.day
|
264 |
+
|
265 |
+
# Extract month
|
266 |
+
input_features['month'] = date_input.dt.month
|
267 |
+
|
268 |
+
# Extract year
|
269 |
+
input_features['year'] = date_input.dt.year
|
270 |
+
|
271 |
+
# Cyclical sine encoding for month
|
272 |
+
input_features['month_sin'] = np.sin(2 * np.pi * input_features['month'] / 12)
|
273 |
+
|
274 |
+
# Cyclical cosine encoding for month
|
275 |
+
input_features['month_cos'] = np.cos(2 * np.pi * input_features['month'] / 12)
|
276 |
+
|
277 |
+
# Extract day of the week (0 = Monday, 6 = Sunday)
|
278 |
+
input_features['day_of_week'] = date_input.dt.weekday
|
279 |
+
|
280 |
+
# Extract week of the year as integer
|
281 |
+
input_features['week_of_year'] = date_input.dt.isocalendar().week
|
282 |
+
|
283 |
+
|
284 |
+
input_features.drop(columns=[date_column], inplace=True)
|
285 |
+
|
286 |
+
# Convert input features to DMatrix format
|
287 |
+
dinput = xgb.DMatrix(input_features)
|
288 |
+
|
289 |
+
# Make predictions using the trained model
|
290 |
+
predicted_sales = model.predict(dinput)[0]
|
291 |
+
|
292 |
+
# Print the predicted sales value
|
293 |
+
predicted_result = f"""{input_data[str(date_column)]}Predicted Value Is {predicted_sales}"""
|
294 |
+
# Return the predicted sales value
|
295 |
+
return predicted_result
|
296 |
+
|
297 |
+
except Exception as e:
|
298 |
+
# Log an error message if an exception occurs during sales prediction
|
299 |
+
LOGGER.error(f"Error predicting sales: {e}")
|
300 |
+
|
301 |
+
# Return None in case of an error
|
302 |
+
return None
|
303 |
+
|
304 |
+
def audio_to_text(self, audio_path):
|
305 |
+
"""
|
306 |
+
transcribe the audio to text.
|
307 |
+
"""
|
308 |
+
|
309 |
+
|
310 |
+
result = self.whisper_model.transcribe(audio_path)
|
311 |
+
print("audio_to_text",result["text"])
|
312 |
+
return result["text"]
|
313 |
+
|
314 |
+
|
315 |
+
def parse_text(self, text, column_list):
|
316 |
+
|
317 |
+
# Define the prompt or input for the model
|
318 |
+
conversation =[{"role": "system", "content": ""},
|
319 |
+
{"role": "user", "content":f""" extract the {column_list}. al
|
320 |
+
l values should be intiger data type. if date in there the format is dd-mm-YYYY.
|
321 |
+
text```{text}```
|
322 |
+
return result should be in JSON format:
|
323 |
+
|
324 |
+
"""
|
325 |
+
}]
|
326 |
+
|
327 |
+
# Generate a response from the GPT-3 model
|
328 |
+
chat_completion = self.client.chat.completions.create(
|
329 |
+
model = "GPT-3",
|
330 |
+
messages = conversation,
|
331 |
+
max_tokens=500,
|
332 |
+
temperature=0,
|
333 |
+
n=1,
|
334 |
+
stop=None,
|
335 |
+
)
|
336 |
+
|
337 |
+
# Extract the generated text from the API response
|
338 |
+
generated_text = chat_completion.choices[0].message.content
|
339 |
+
|
340 |
+
# Assuming jsonString is your JSON string
|
341 |
+
json_data = json.loads(generated_text)
|
342 |
+
print("parse_text",json_data)
|
343 |
+
return json_data
|
344 |
+
|
345 |
+
def main(self, train_csv_path: str, audio_path, target_column, column_list) -> None:
|
346 |
+
"""
|
347 |
+
Main function to execute the demand forecasting pipeline.
|
348 |
+
|
349 |
+
Args:
|
350 |
+
- train_csv_path (str): Path to the training CSV file.
|
351 |
+
- date (str): Date for which sales prediction is needed (in 'YYYY-MM-DD' format).
|
352 |
+
"""
|
353 |
+
try:
|
354 |
+
|
355 |
+
|
356 |
+
# Split the string by comma and convert it into a list
|
357 |
+
column_list = column_list.split(", ")
|
358 |
+
|
359 |
+
print("train_csv_path", train_csv_path)
|
360 |
+
print("audio_path", audio_path)
|
361 |
+
print("column_list", column_list)
|
362 |
+
print("target_column", target_column)
|
363 |
+
|
364 |
+
text = self.audio_to_text(audio_path)
|
365 |
+
|
366 |
+
input_data = self.parse_text(text, column_list)
|
367 |
+
|
368 |
+
#load data
|
369 |
+
train_data = self.load_data(train_csv_path)
|
370 |
+
|
371 |
+
#preprocess the train data
|
372 |
+
train_df = self.preprocess_data(train_data, column_list)
|
373 |
+
|
374 |
+
# Train model and get validation predictions
|
375 |
+
trained_model, y_val, y_val_pred, validation = self.train_model(train_df, target_column, column_list)
|
376 |
+
|
377 |
+
# Plot interactive evaluation for training
|
378 |
+
plot = self.plot_evaluation_interactive(y_val, y_val_pred, title='Validation Set Evaluation')
|
379 |
+
|
380 |
+
# Predict sales for the specified date using the trained model
|
381 |
+
predicted_value = self.predict_sales_for_date(input_data, trained_model)
|
382 |
+
|
383 |
+
return plot, predicted_value, validation
|
384 |
+
|
385 |
+
except Exception as e:
|
386 |
+
# Log an error message if an exception occurs in the main function
|
387 |
+
LOGGER.error(f"Error in main function: {e}")
|
388 |
+
|
389 |
+
def gradio_interface(self):
|
390 |
+
with gr.Blocks(css="style.css", theme="freddyaboulton/test-blue") as demo:
|
391 |
+
|
392 |
+
gr.HTML("""<center><h1 style="color:#fff">Demand Forecasting</h1></center>""")
|
393 |
+
|
394 |
+
with gr.Row():
|
395 |
+
with gr.Column(scale=0.50):
|
396 |
+
train_csv = gr.File(elem_classes="uploadbutton")
|
397 |
+
with gr.Column(scale=0.50):
|
398 |
+
column_list = gr.Textbox(label="Column List")
|
399 |
+
|
400 |
+
with gr.Row():
|
401 |
+
with gr.Column(scale=0.50):
|
402 |
+
audio_path = gr.Audio(sources=["microphone"], type="filepath")
|
403 |
+
with gr.Row():
|
404 |
+
with gr.Column(scale=0.50):
|
405 |
+
selected_column = gr.Textbox(label="Select column")
|
406 |
+
with gr.Column(scale=0.50):
|
407 |
+
target_column = gr.Textbox(label="target column")
|
408 |
+
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
validation = gr.Textbox(label="Validation")
|
412 |
+
predicted_result = gr.Textbox(label="Predicted Result")
|
413 |
+
plot = gr.Plot()
|
414 |
+
|
415 |
+
train_csv.upload(self.get_column, train_csv, column_list)
|
416 |
+
audio_path.stop_recording(self.main, [train_csv, audio_path, target_column, selected_column], [plot, predicted_result, validation])
|
417 |
+
|
418 |
+
demo.launch(debug=True)
|
419 |
+
|
420 |
+
if __name__ == "__main__":
|
421 |
+
|
422 |
+
demand = DemandForecasting()
|
423 |
+
demand.gradio_interface()
|