File size: 6,280 Bytes
ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e a258601 559b00c fa7808c ffead1e fa7808c ffead1e 05118bf 559b00c 05118bf 559b00c 05118bf 559b00c 05118bf ffead1e 05118bf fa7808c 05118bf ffead1e 05118bf 7b7c424 05118bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import gradio as gr
import json
import torch
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from gradio import Markdown
# Automatic device detection
if torch.cuda.is_available():
device_type = "cuda"
device_selection = "cuda:0"
else:
device_type = "cpu"
device_selection = "cpu"
class Tango:
def __init__(self, name = "declare-lab/tango2", device = device_selection):
path = snapshot_download(repo_id = name)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = AudioDiffusion(**main_config).to(device)
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
print ("Successfully loaded checkpoint from:", name)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
def chunks(self, lst, n):
""" Yield successive n-sized chunks from a list. """
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
""" Generate audio for a single prompt string. """
with torch.no_grad():
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave[0]
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
""" Generate audio for a list of prompt strings. """
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k: k + batch_size]
with torch.no_grad():
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
return list(self.chunks(outputs, samples))
# Initialize TANGO
tango = Tango(device = "cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)
def gradio_generate(prompt, steps, guidance):
output_wave = tango.generate(prompt, steps, guidance)
return gr.make_waveform((16000, output_wave))
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("""
<p style="text-align: center;">
<b><big><big><big>Text-to-Audio</big></big></big></b>
<br/>Generates an audio file, freely, without account, without watermark, that you can download.
</p>
<br/>
<br/>
✨ Powered by <i>Tango 2</i> AI.
<br/>
<ul>
<li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li>
</ul>
<br/>
🐌 Slow process... Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/>
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
⚖️ You can use, modify and share the generated sounds but not for commercial uses.
"""
)
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
denoising_steps = gr.Slider(label = "Steps", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
guidance_scale = gr.Slider(label = "Guidance Scale", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
submit = gr.Button("Generate 🚀", variant = "primary")
output_audio = gr.Audio(label = "Generated Audio")
submit.click(fn = gradio_generate, inputs = [
input_text,
denoising_steps,
guidance_scale
], outputs = [
output_audio
], scroll_to_output = True)
gr.Examples(
fn = gradio_generate,
inputs = [
input_text,
denoising_steps,
guidance_scale
],
outputs = [
output_audio
],
examples = [
["A hammer is hitting a wooden surface", 100, 3],
["Peaceful and calming ambient music with singing bowl and other instruments.", 100, 3],
["A man is speaking in a small room.", 100, 3],
["A female is speaking followed by footstep sound", 100, 3],
["Wooden table tapping sound followed by water pouring sound.", 100, 3],
],
cache_examples = "lazy",
)
interface.queue(10).launch() |