Spaces:
Runtime error
Runtime error
File size: 14,864 Bytes
4bfb360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
from dataclasses import dataclass
from typing import Optional, List
import torch
import torch.nn as nn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import SamplerOutput
from vllm.attention import AttentionMetadata
from vllm.attention import Attention as pagedAttention
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from serve.sampler import Sampler
def find_multiple(n: int, k: int):
if n % k == 0:
return n
return n + k - (n % k)
@dataclass
class ModelArgs:
dim: int = 4096
n_layer: int = 32
n_head: int = 32
n_kv_head: Optional[int] = None
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
rope_base: float = 10000
norm_eps: float = 1e-5
initializer_range: float = 0.02
num_classes: int = 1000
class_dropout_prob: float = 0.1
model_type: str = 'c2i'
cfg_scale: float = 4.0
vocab_size: int = 16384
cls_token_num: int = 1
block_size: int = 256
max_batch_size: int = 32
max_seq_len: int = 2048
#################################################################################
# Embedding Layers for Class Labels #
#################################################################################
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
# def token_drop(self, labels, force_drop_ids=None):
# """
# Drops labels to enable classifier-free guidance.
# """
# if force_drop_ids is None:
# drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
# else:
# drop_ids = force_drop_ids == 1
# labels = torch.where(drop_ids, self.num_classes, labels)
# return labels
# def forward(self, labels, train, force_drop_ids=None):
def forward(self, labels):
# use_dropout = self.dropout_prob > 0
# if (train and use_dropout) or (force_drop_ids is not None):
# labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# GPT Model #
#################################################################################
# class RMSNorm(torch.nn.Module):
# def __init__(self, dim: int, eps: float = 1e-5):
# super().__init__()
# self.eps = eps
# self.weight = nn.Parameter(torch.ones(dim))
# def _norm(self, x):
# return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
# def forward(self, x):
# output = self._norm(x.float()).type_as(x)
# return output * self.weight
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
hidden_dim = 4 * config.dim
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if config.ffn_dim_multiplier is not None:
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
# self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
# self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w_merged = nn.Linear(config.dim, hidden_dim * 2, bias=False)
self.act_fn = SiluAndMul()
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
# self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
# def forward(self, x):
# return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
def forward(self, x):
x = self.w_merged(x)
x = self.act_fn(x)
x = self.w2(x)
# return self.ffn_dropout(x)
return x
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
self.dim = config.dim
self.head_dim = config.dim // config.n_head
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
# pagedAttention
self.attn = pagedAttention(self.n_head,
self.head_dim,
self.head_dim**-0.5,
num_kv_heads=self.n_kv_head,
)
# 2d rotary pos embedding
grid_size = int(config.block_size ** 0.5)
assert grid_size * grid_size == config.block_size
freqs_cis = precompute_freqs_cis_2d(grid_size, config.dim // config.n_head, config.rope_base, config.cls_token_num)
self.register_buffer('freqs_cis', freqs_cis)
def forward(
self,
x: torch.Tensor,
positions: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
):
kv_size = self.n_kv_head * self.head_dim
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
xq = xq.view(*xq.shape[:-1], 1, self.n_head, self.head_dim)
xk = xk.view(*xk.shape[:-1], 1, self.n_kv_head, self.head_dim)
freqs_cis = self.freqs_cis[positions].unsqueeze(1)
xq = apply_rotary_emb_bs(xq, freqs_cis)
xk = apply_rotary_emb_bs(xk, freqs_cis)
xq = xq.flatten(1)
xk = xk.flatten(1)
output = self.attn(xq, xk, xv, kv_cache, attn_metadata)
output = self.wo(output)
return output
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
def forward(self, x: torch.Tensor, positions: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata):
h = x + self.attention(self.attention_norm(x), positions, kv_cache, attn_metadata)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.n_layer = config.n_layer
self.block_size = config.block_size
self.num_classes = config.num_classes
self.model_type = config.model_type
self.cls_token_num = config.cls_token_num
self.cfg_scale = config.cfg_scale
if self.model_type == 'c2i':
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
else:
raise Exception("vllm only supports c2i now, please check model type")
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.layers = torch.nn.ModuleList()
for layer_id in range(config.n_layer):
self.layers.append(TransformerBlock(config))
# output layer
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler(config.cfg_scale)
def forward(
self,
input_ids: torch.Tensor=None,
positions: torch.Tensor=None,
kv_caches: List[torch.Tensor]=None,
attn_metadata: AttentionMetadata=None,
):
# if positions.max() == 0: # prefill in inference
# token_embeddings = self.cls_embedding(input_ids)
# else: # decode_n_tokens(kv cache) in inference
# token_embeddings = self.tok_embeddings(input_ids)
cond_ids = torch.clamp(input_ids, max=self.num_classes)
token_embeddings = self.cls_embedding(cond_ids) * (positions.max() == 0) + \
self.tok_embeddings(input_ids) * (positions.max() != 0)
hh = token_embeddings
# transformer blocks
for layer_id, layer in enumerate(self.layers):
hh = layer(hh, positions, kv_caches[layer_id], attn_metadata)
# output layers
hh = self.norm(hh)
return hh
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.output.weight, hidden_states, sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def custom_load_state_dict(self, model_weights):
model_weights = model_weights.copy()
for layer_id in range(len(self.layers)):
branch1 = f'layers.{layer_id}.feed_forward.w1.weight'
branch3 = f'layers.{layer_id}.feed_forward.w3.weight'
branch_merged = f'layers.{layer_id}.feed_forward.w_merged.weight'
model_weights[branch_merged] = torch.cat(
[model_weights[branch1], model_weights[branch3]], dim=0
)
model_weights.pop(branch1)
model_weights.pop(branch3)
if 'freqs_cis' in model_weights:
model_weights.pop('freqs_cis')
self.load_state_dict(model_weights, strict=False)
#################################################################################
# Rotary Positional Embedding Functions #
#################################################################################
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
return cond_cache
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
# split the dimension into half, one for x and one for y
half_dim = n_elem // 2
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
t = torch.arange(grid_size, device=freqs.device)
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
freqs_grid = torch.concat([
freqs[:, None, :].expand(-1, grid_size, -1),
freqs[None, :, :].expand(grid_size, -1, -1),
], dim=-1) # (grid_size, grid_size, head_dim // 2)
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
cache = cache_grid.flatten(0, 1)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
return cond_cache
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
# x: (bs, seq_len, n_head, head_dim)
# freqs_cis (seq_len, head_dim // 2, 2)
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
x_out2 = torch.stack([
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
], dim=-1)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
def apply_rotary_emb_bs(x: torch.Tensor, freqs_cis: torch.Tensor):
# x: (bs, seq_len, n_head, head_dim)
# freqs_cis (seq_len, head_dim // 2, 2)
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
freqs_cis = freqs_cis.view(xshaped.size(0), xshaped.size(1), 1, xshaped.size(3), 2) # (bs, seq_len, 1, head_dim//2, 2)
x_out2 = torch.stack([
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
], dim=-1)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
#################################################################################
# GPT Configs #
#################################################################################
### text-conditional
def GPT_7B(**kwargs):
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
def GPT_3B(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
def GPT_1B(**kwargs):
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
### class-conditional
def GPT_XXXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
def GPT_XXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
def GPT_XL(**kwargs):
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
def GPT_L(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
def GPT_B(**kwargs):
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
GPT_models = {
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
} |