File size: 7,794 Bytes
4bfb360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from typing import Dict, List, Set, Tuple, Optional, Set
import argparse

from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
                         ModelConfig, ParallelConfig, SchedulerConfig,
                         SpeculativeConfig, VisionLanguageConfig)
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
                        make_async)

logger = init_logger(__name__)


class GPUExecutor(ExecutorBase):
    def __init__(
        self,
        args: argparse.ArgumentParser,
        model_config: ModelConfig,
        cache_config: CacheConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        device_config: DeviceConfig,
        load_config: LoadConfig,
        lora_config: Optional[LoRAConfig],
        vision_language_config: Optional[VisionLanguageConfig],
        speculative_config: Optional[SpeculativeConfig],
    ) -> None:
        self.args = args
        self.model_config = model_config
        self.cache_config = cache_config
        self.lora_config = lora_config
        self.load_config = load_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.device_config = device_config
        self.vision_language_config = vision_language_config
        self.speculative_config = speculative_config

        self._init_executor()

    def _init_executor(self) -> None:
        """Initialize the worker and load the model.

        If speculative decoding is enabled, we instead create the speculative
        worker.
        """
        if self.speculative_config is None:
            self._init_non_spec_worker()
        else:
            self._init_spec_worker()

    def _init_non_spec_worker(self):
        # Lazy import the Worker to avoid importing torch.cuda/xformers
        # before CUDA_VISIBLE_DEVICES is set in the Worker
        # from vllm.worker.worker import Worker
        from serve.worker import Worker

        assert self.parallel_config.world_size == 1, (
            "GPUExecutor only supports single GPU.")

        distributed_init_method = get_distributed_init_method(
            get_ip(), get_open_port())
        self.driver_worker = Worker(
            model_config=self.model_config,
            parallel_config=self.parallel_config,
            scheduler_config=self.scheduler_config,
            device_config=self.device_config,
            cache_config=self.cache_config,
            load_config=self.load_config,
            local_rank=0,
            rank=0,
            distributed_init_method=distributed_init_method,
            lora_config=self.lora_config,
            vision_language_config=self.vision_language_config,
            is_driver_worker=True,
        )
        self.driver_worker.init_device()
        self.driver_worker.load_model(self.args)

    def _init_spec_worker(self):
        """Initialize a SpecDecodeWorker, using a draft model for proposals.
        """
        assert self.speculative_config is not None

        from vllm.spec_decode.multi_step_worker import MultiStepWorker
        from vllm.spec_decode.spec_decode_worker import SpecDecodeWorker
        from vllm.worker.worker import Worker

        distributed_init_method = get_distributed_init_method(
            get_ip(), get_open_port())

        target_worker = Worker(
            model_config=self.model_config,
            parallel_config=self.parallel_config,
            scheduler_config=self.scheduler_config,
            device_config=self.device_config,
            cache_config=self.cache_config,
            load_config=self.load_config,
            local_rank=0,
            rank=0,
            distributed_init_method=distributed_init_method,
            lora_config=self.lora_config,
            vision_language_config=self.vision_language_config,
            is_driver_worker=True,
        )

        draft_worker = MultiStepWorker(
            model_config=self.speculative_config.draft_model_config,
            parallel_config=self.speculative_config.draft_parallel_config,
            scheduler_config=self.scheduler_config,
            device_config=self.device_config,
            cache_config=self.cache_config,
            load_config=self.load_config,
            local_rank=0,
            rank=0,
            distributed_init_method=distributed_init_method,
            lora_config=self.lora_config,
            vision_language_config=self.vision_language_config,
            is_driver_worker=True,
        )

        spec_decode_worker = SpecDecodeWorker.from_workers(
            proposer_worker=draft_worker, scorer_worker=target_worker)

        assert self.parallel_config.world_size == 1, (
            "GPUExecutor only supports single GPU.")

        self.driver_worker = spec_decode_worker

        # Load model handled in spec decode worker.
        self.driver_worker.init_device()

    def determine_num_available_blocks(self) -> Tuple[int, int]:
        """Determine the number of available KV blocks by invoking the
        underlying worker.
        """
        return self.driver_worker.determine_num_available_blocks()

    def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks) -> None:
        """Initialize the KV cache by invoking the underlying worker.
        """
        # NOTE: This is logged in the executor because there can be >1 worker
        # with other executors. We could log in the engine level, but work
        # remains to abstract away the device for non-GPU configurations.
        logger.info(f"# GPU blocks: {num_gpu_blocks}, "
                    f"# CPU blocks: {num_cpu_blocks}")

        self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)

    def execute_model(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
        blocks_to_copy: Dict[int, List[int]],
        num_lookahead_slots: int,
    ) -> List[SamplerOutput]:
        output = self.driver_worker.execute_model(
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=blocks_to_swap_in,
            blocks_to_swap_out=blocks_to_swap_out,
            blocks_to_copy=blocks_to_copy,
            num_lookahead_slots=num_lookahead_slots,
        )
        return output

    def add_lora(self, lora_request: LoRARequest) -> bool:
        assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
        return self.driver_worker.add_lora(lora_request)

    def remove_lora(self, lora_id: int) -> bool:
        assert lora_id > 0, "lora_id must be greater than 0."
        return self.driver_worker.remove_lora(lora_id)

    def list_loras(self) -> Set[int]:
        return self.driver_worker.list_loras()

    def check_health(self) -> None:
        # GPUExecutor will always be healthy as long as
        # it's running.
        return


class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase):

    async def execute_model_async(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
        blocks_to_copy: Dict[int, List[int]],
    ) -> SamplerOutput:
        output = await make_async(self.driver_worker.execute_model)(
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=blocks_to_swap_in,
            blocks_to_swap_out=blocks_to_swap_out,
            blocks_to_copy=blocks_to_copy)
        return output