File size: 28,739 Bytes
4bfb360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# Modified from:
#   vLLM:    https://github.com/vllm-project/vllm/blob/main/vllm/engine/llm_engine.py
import time
from typing import Iterable, List, Optional, Type, Union
import argparse

from transformers import GenerationConfig, PreTrainedTokenizer

import vllm
from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, LoadConfig,
                         LoRAConfig, ModelConfig, ParallelConfig,
                         SchedulerConfig, SpeculativeConfig,
                         VisionLanguageConfig)
from vllm.core.scheduler import Scheduler, SchedulerOutputs
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.metrics import StatLogger, Stats
from vllm.engine.output_processor.interfaces import (
    SequenceGroupOutputProcessor)
from vllm.engine.output_processor.stop_checker import StopChecker
from vllm.engine.output_processor.util import create_output_by_sequence_group
from vllm.engine.ray_utils import initialize_ray_cluster
from vllm.executor.executor_base import ExecutorBase
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import (MultiModalData, SamplerOutput, Sequence,
                           SequenceGroup)
from vllm.transformers_utils.detokenizer import Detokenizer
from vllm.transformers_utils.tokenizer_group import (BaseTokenizerGroup,
                                                     get_tokenizer_group)
from vllm.usage.usage_lib import (UsageContext, is_usage_stats_enabled,
                                  usage_message)
from vllm.utils import Counter

logger = init_logger(__name__)
_LOCAL_LOGGING_INTERVAL_SEC = 5


def _load_generation_config_dict(model_config: ModelConfig):
    try:
        return GenerationConfig.from_pretrained(
            model_config.model,
            revision=model_config.revision,
        ).to_diff_dict()
    except OSError:
        # Not found.
        return {}


class LLMEngine:
    """An LLM engine that receives requests and generates texts.

    This is the main class for the vLLM engine. It receives requests
    from clients and generates texts from the LLM. It includes a tokenizer, a
    language model (possibly distributed across multiple GPUs), and GPU memory
    space allocated for intermediate states (aka KV cache). This class utilizes
    iteration-level scheduling and efficient memory management to maximize the
    serving throughput.

    The `LLM` class wraps this class for offline batched inference and the
    `AsyncLLMEngine` class wraps this class for online serving.

    NOTE: The config arguments are derived from the `EngineArgs` class. For the
    comprehensive list of arguments, see `EngineArgs`.

    Args:
        model_config: The configuration related to the LLM model.
        cache_config: The configuration related to the KV cache memory
            management.
        parallel_config: The configuration related to distributed execution.
        scheduler_config: The configuration related to the request scheduler.
        device_config: The configuration related to the device.
        lora_config (Optional): The configuration related to serving multi-LoRA.
        vision_language_config (Optional): The configuration related to vision
            language models.
        speculative_config (Optional): The configuration related to speculative
            decoding.
        executor_class: The model executor class for managing distributed
            execution.
        log_stats: Whether to log statistics.
        usage_context: Specified entry point, used for usage info collection
    """

    def __init__(
        self,
        args: argparse.ArgumentParser,
        model_config: ModelConfig,
        cache_config: CacheConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        device_config: DeviceConfig,
        load_config: LoadConfig,
        lora_config: Optional[LoRAConfig],
        vision_language_config: Optional[VisionLanguageConfig],
        speculative_config: Optional[SpeculativeConfig],
        decoding_config: Optional[DecodingConfig],
        executor_class: Type[ExecutorBase],
        log_stats: bool,
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
    ) -> None:
        logger.info(
            f"Initializing an LLM engine (v{vllm.__version__}) with config: "
            f"model={model_config.model!r}, "
            f"speculative_config={speculative_config!r}, "
            f"tokenizer={model_config.tokenizer!r}, "
            f"skip_tokenizer_init={model_config.skip_tokenizer_init}, "
            f"tokenizer_mode={model_config.tokenizer_mode}, "
            f"revision={model_config.revision}, "
            f"tokenizer_revision={model_config.tokenizer_revision}, "
            f"trust_remote_code={model_config.trust_remote_code}, "
            f"dtype={model_config.dtype}, "
            f"max_seq_len={model_config.max_model_len}, "
            f"download_dir={load_config.download_dir!r}, "
            f"load_format={load_config.load_format}, "
            f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
            f"disable_custom_all_reduce="
            f"{parallel_config.disable_custom_all_reduce}, "
            f"quantization={model_config.quantization}, "
            f"enforce_eager={model_config.enforce_eager}, "
            f"kv_cache_dtype={cache_config.cache_dtype}, "
            f"quantization_param_path={model_config.quantization_param_path}, "
            f"device_config={device_config.device}, "
            f"decoding_config={decoding_config!r}, "
            f"seed={model_config.seed})")
        # TODO(woosuk): Print more configs in debug mode.

        self.model_config = model_config
        self.cache_config = cache_config
        self.lora_config = lora_config
        self.vision_language_config = vision_language_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.device_config = device_config
        self.speculative_config = speculative_config
        self.load_config = load_config
        self.decoding_config = decoding_config or DecodingConfig()
        self.log_stats = log_stats

        if not self.model_config.skip_tokenizer_init:
            self.tokenizer: BaseTokenizerGroup
            self._init_tokenizer()
            self.detokenizer = Detokenizer(self.tokenizer)
        else:
            self.detokenizer = None
            self.tokenizer = None

        self.seq_counter = Counter()
        self.generation_config_fields = _load_generation_config_dict(
            model_config)

        self.model_executor = executor_class(
            args=args,
            model_config=model_config,
            cache_config=cache_config,
            parallel_config=parallel_config,
            scheduler_config=scheduler_config,
            device_config=device_config,
            lora_config=lora_config,
            vision_language_config=vision_language_config,
            speculative_config=speculative_config,
            load_config=load_config,
        )

        self._initialize_kv_caches()

        # If usage stat is enabled, collect relevant info.
        if is_usage_stats_enabled():
            from vllm.model_executor.model_loader import (
                get_architecture_class_name)
            usage_message.report_usage(
                get_architecture_class_name(model_config),
                usage_context,
                extra_kvs={
                    # Common configuration
                    "dtype":
                    str(model_config.dtype),
                    "tensor_parallel_size":
                    parallel_config.tensor_parallel_size,
                    "block_size":
                    cache_config.block_size,
                    "gpu_memory_utilization":
                    cache_config.gpu_memory_utilization,

                    # Quantization
                    "quantization":
                    model_config.quantization,
                    "kv_cache_dtype":
                    cache_config.cache_dtype,

                    # Feature flags
                    "enable_lora":
                    bool(lora_config),
                    "enable_prefix_caching":
                    cache_config.enable_prefix_caching,
                    "enforce_eager":
                    model_config.enforce_eager,
                    "disable_custom_all_reduce":
                    parallel_config.disable_custom_all_reduce,
                })

        if self.tokenizer:
            # Ping the tokenizer to ensure liveness if it runs in a
            # different process.
            self.tokenizer.ping()

        # Create the scheduler.
        # NOTE: the cache_config here have been updated with the numbers of
        # GPU and CPU blocks, which are profiled in the distributed executor.
        self.scheduler = Scheduler(scheduler_config, cache_config, lora_config)

        # Metric Logging.
        if self.log_stats:
            self.stat_logger = StatLogger(
                local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
                labels=dict(model_name=model_config.model))
            self.stat_logger.info("cache_config", self.cache_config)

        # Create sequence output processor, e.g. for beam search or
        # speculative decoding.
        self.output_processor = (
            SequenceGroupOutputProcessor.create_output_processor(
                self.scheduler_config,
                self.detokenizer,
                self.scheduler,
                self.seq_counter,
                self.get_tokenizer_for_seq,
                stop_checker=StopChecker(
                    self.scheduler_config.max_model_len,
                    self.get_tokenizer_for_seq,
                ),
            ))

    def _initialize_kv_caches(self) -> None:
        """Initialize the KV cache in the worker(s).

        The workers will determine the number of blocks in both the GPU cache
        and the swap CPU cache.
        """
        num_gpu_blocks, num_cpu_blocks = (
            self.model_executor.determine_num_available_blocks())

        if self.cache_config.num_gpu_blocks_override is not None:
            num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override
            logger.info(f"Overriding {num_gpu_blocks=} with "
                        f"{num_gpu_blocks_override=}")
            num_gpu_blocks = num_gpu_blocks_override

        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

        self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks)

    @classmethod
    def from_engine_args(
        cls,
        engine_args: EngineArgs,
        usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
        args: argparse.ArgumentParser = None,
    ) -> "LLMEngine":
        """Creates an LLM engine from the engine arguments."""
        # Create the engine configs.
        engine_config = engine_args.create_engine_config()

        # Initialize the cluster and specify the executor class.
        if engine_config.device_config.device_type == "neuron":
            from vllm.executor.neuron_executor import NeuronExecutor
            executor_class = NeuronExecutor
        elif engine_config.device_config.device_type == "cpu":
            from vllm.executor.cpu_executor import CPUExecutor
            executor_class = CPUExecutor
        elif engine_config.parallel_config.worker_use_ray:
            initialize_ray_cluster(engine_config.parallel_config)
            from vllm.executor.ray_gpu_executor import RayGPUExecutor
            executor_class = RayGPUExecutor
        else:
            assert engine_config.parallel_config.world_size == 1, (
                "Ray is required if parallel_config.world_size > 1.")
            # from vllm.executor.gpu_executor import GPUExecutor
            from serve.gpu_executor import GPUExecutor
            executor_class = GPUExecutor

        # Create the LLM engine.
        engine = cls(
            **engine_config.to_dict(),
            executor_class=executor_class,
            log_stats=not engine_args.disable_log_stats,
            usage_context=usage_context,
            args=args,
        )
        return engine

    def __reduce__(self):
        # This is to ensure that the LLMEngine is not referenced in
        # the closure used to initialize Ray worker actors
        raise RuntimeError("LLMEngine should not be pickled!")

    def get_tokenizer(self) -> "PreTrainedTokenizer":
        return self.tokenizer.get_lora_tokenizer(None)

    def get_tokenizer_for_seq(self,
                              sequence: Sequence) -> "PreTrainedTokenizer":
        return self.tokenizer.get_lora_tokenizer(sequence.lora_request)

    def _init_tokenizer(self, **tokenizer_init_kwargs):
        init_kwargs = dict(
            tokenizer_id=self.model_config.tokenizer,
            enable_lora=bool(self.lora_config),
            max_num_seqs=self.scheduler_config.max_num_seqs,
            max_input_length=None,
            tokenizer_mode=self.model_config.tokenizer_mode,
            trust_remote_code=self.model_config.trust_remote_code,
            revision=self.model_config.tokenizer_revision)
        init_kwargs.update(tokenizer_init_kwargs)
        self.tokenizer = get_tokenizer_group(
            self.parallel_config.tokenizer_pool_config, **init_kwargs)

    def _verify_args(self) -> None:
        self.model_config.verify_with_parallel_config(self.parallel_config)
        self.cache_config.verify_with_parallel_config(self.parallel_config)
        if self.lora_config:
            self.lora_config.verify_with_model_config(self.model_config)
            self.lora_config.verify_with_scheduler_config(
                self.scheduler_config)

    def encode_request(
        self,
        request_id: str,  # pylint: disable=unused-argument
        prompt: Optional[str],
        prompt_token_ids: Optional[List[int]] = None,
        lora_request: Optional[LoRARequest] = None,
    ):
        if prompt_token_ids is None:
            assert prompt is not None
            prompt_token_ids = self.tokenizer.encode(request_id=request_id,
                                                     prompt=prompt,
                                                     lora_request=lora_request)
        return prompt_token_ids

    def add_request(
        self,
        request_id: str,
        prompt: Optional[str],
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
        lora_request: Optional[LoRARequest] = None,
        multi_modal_data: Optional[MultiModalData] = None,
    ) -> None:
        """Add a request to the engine's request pool.

        The request is added to the request pool and will be processed by the
        scheduler as `engine.step()` is called. The exact scheduling policy is
        determined by the scheduler.

        Args:
            request_id: The unique ID of the request.
            prompt: The prompt string. Can be None if prompt_token_ids is
                provided.
            sampling_params: The sampling parameters for text generation.
            prompt_token_ids: The token IDs of the prompt. If None, we
                use the tokenizer to convert the prompts to token IDs.
            arrival_time: The arrival time of the request. If None, we use
                the current monotonic time.
            multi_modal_data: Multi modal data per request.

        Details:
            - Set arrival_time to the current time if it is None.
            - Set prompt_token_ids to the encoded prompt if it is None.
            - Create `best_of` number of :class:`~vllm.Sequence` objects.
            - Create a :class:`~vllm.SequenceGroup` object
              from the list of :class:`~vllm.Sequence`.
            - Add the :class:`~vllm.SequenceGroup` object to the scheduler.

        Example:
            >>> # initialize engine
            >>> engine = LLMEngine.from_engine_args(engine_args)
            >>> # set request arguments
            >>> example_prompt = "Who is the president of the United States?"
            >>> sampling_params = SamplingParams(temperature=0.0)
            >>> request_id = 0
            >>>
            >>> # add the request to the engine
            >>> engine.add_request(
            >>>    str(request_id),
            >>>    example_prompt,
            >>>    SamplingParams(temperature=0.0))
            >>> # continue the request processing
            >>> ...
        """
        if lora_request is not None and not self.lora_config:
            raise ValueError(f"Got lora_request {lora_request} but LoRA is "
                             "not enabled!")
        max_logprobs = self.get_model_config().max_logprobs
        if (sampling_params.logprobs
                and sampling_params.logprobs > max_logprobs) or (
                    sampling_params.prompt_logprobs
                    and sampling_params.prompt_logprobs > max_logprobs):
            raise ValueError(f"Cannot request more than "
                             f"{max_logprobs} logprobs.")
        if arrival_time is None:
            arrival_time = time.time()
        prompt_token_ids = self.encode_request(
            request_id=request_id,
            prompt=prompt,
            prompt_token_ids=prompt_token_ids,
            lora_request=lora_request)

        # Create the sequences.
        block_size = self.cache_config.block_size
        seq_id = next(self.seq_counter)
        eos_token_id = None
        if self.tokenizer:
            eos_token_id = self.tokenizer.get_lora_tokenizer(
                lora_request).eos_token_id
        else:
            logger.warning("Use None for EOS token id because tokenizer is "
                           "not initialized")
        seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
                       eos_token_id, lora_request)
        
        # Defensive copy of SamplingParams, which are used by the sampler,
        # this doesn't deep-copy LogitsProcessor objects
        sampling_params = sampling_params.clone()
        # Add the eos token id into the sampling_params to support min_tokens
        # processing
        if seq.eos_token_id is not None:
            sampling_params.all_stop_token_ids.add(seq.eos_token_id)
        sampling_params.update_from_generation_config(
            self.generation_config_fields)

        # Create the sequence group.
        seq_group = SequenceGroup(request_id, [seq], sampling_params,
                                  arrival_time, lora_request, multi_modal_data)

        # Add the sequence group to the scheduler.
        self.scheduler.add_seq_group(seq_group)

    def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
        """Aborts a request(s) with the given ID.

        Args:
            request_id: The ID(s) of the request to abort.

        Details:
            - Refer to the
              :meth:`~vllm.core.scheduler.Scheduler.abort_seq_group`
              from class :class:`~vllm.core.scheduler.Scheduler`.

        Example:
            >>> # initialize engine and add a request with request_id
            >>> request_id = str(0)
            >>> # abort the request
            >>> engine.abort_request(request_id)
        """
        self.scheduler.abort_seq_group(request_id)

    def get_model_config(self) -> ModelConfig:
        """Gets the model configuration."""
        return self.model_config

    def get_num_unfinished_requests(self) -> int:
        """Gets the number of unfinished requests."""
        return self.scheduler.get_num_unfinished_seq_groups()

    def has_unfinished_requests(self) -> bool:
        """Returns True if there are unfinished requests."""
        return self.scheduler.has_unfinished_seqs()

    def _process_model_outputs(
            self, output: List[SamplerOutput],
            scheduled_seq_groups: List[SequenceGroup],
            ignored_seq_groups: List[SequenceGroup]) -> List[RequestOutput]:
        """Apply the model output to the sequences in the scheduled seq groups.

        Returns RequestOutputs that can be returned to the client.
        """
        now = time.time()

        # Organize outputs by [sequence group][step] instead of
        # [step][sequence group].
        output_by_sequence_group = create_output_by_sequence_group(
            sampler_outputs=output, num_seq_groups=len(scheduled_seq_groups))

        # Update the scheduled sequence groups with the model outputs.
        for scheduled_seq_group, outputs in zip(scheduled_seq_groups,
                                                output_by_sequence_group):
            seq_group = scheduled_seq_group.seq_group
            seq_group.update_num_computed_tokens(
                scheduled_seq_group.token_chunk_size)
            # If uncomputed tokens > 0, it means prefill is chunked.
            # We don't need to process outputs in that case.
            if seq_group.get_num_uncomputed_tokens() == 0:
                self.output_processor.process_outputs(seq_group, outputs)

        # Free the finished sequence groups.
        self.scheduler.free_finished_seq_groups()

        # Create the outputs.
        request_outputs: List[RequestOutput] = []
        for scheduled_seq_group in scheduled_seq_groups:
            seq_group = scheduled_seq_group.seq_group
            seq_group.maybe_set_first_token_time(now)
            request_output = RequestOutput.from_seq_group(seq_group)
            request_outputs.append(request_output)
        for seq_group in ignored_seq_groups:
            request_output = RequestOutput.from_seq_group(seq_group)
            request_outputs.append(request_output)
        return request_outputs

    def step(self) -> List[RequestOutput]:
        """Performs one decoding iteration and returns newly generated results.

        .. figure:: https://i.imgur.com/sv2HssD.png
            :alt: Overview of the step function
            :align: center

            Overview of the step function.

        Details:
            - Step 1: Schedules the sequences to be executed in the next
              iteration and the token blocks to be swapped in/out/copy.

                - Depending on the scheduling policy,
                  sequences may be `preempted/reordered`.
                - A Sequence Group (SG) refer to a group of sequences
                  that are generated from the same prompt.

            - Step 2: Calls the distributed executor to execute the model.
            - Step 3: Processes the model output. This mainly includes:

                - Decodes the relevant outputs.
                - Updates the scheduled sequence groups with model outputs
                  based on its `sampling parameters` (`use_beam_search` or not).
                - Frees the finished sequence groups.

            - Finally, it creates and returns the newly generated results.

        Example:
            >>> # Please see the example/ folder for more detailed examples.
            >>>
            >>> # initialize engine and request arguments
            >>> engine = LLMEngine.from_engine_args(engine_args)
            >>> example_inputs = [(0, "What is LLM?",
            >>>    SamplingParams(temperature=0.0))]
            >>>
            >>> # Start the engine with an event loop
            >>> while True:
            >>>     if example_inputs:
            >>>         req_id, prompt, sampling_params = example_inputs.pop(0)
            >>>         engine.add_request(str(req_id), prompt, sampling_params)
            >>>
            >>>     # continue the request processing
            >>>     request_outputs = engine.step()
            >>>     for request_output in request_outputs:
            >>>         if request_output.finished:
            >>>             # return or show the request output
            >>>
            >>>     if not (engine.has_unfinished_requests() or example_inputs):
            >>>         break
        """
        seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
        if not scheduler_outputs.is_empty():
            output = self.model_executor.execute_model(
                seq_group_metadata_list=seq_group_metadata_list,
                blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
                blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
                blocks_to_copy=scheduler_outputs.blocks_to_copy,
                num_lookahead_slots=scheduler_outputs.num_lookahead_slots)
        else:
            output = []

        request_outputs = self._process_model_outputs(
            output, scheduler_outputs.scheduled_seq_groups,
            scheduler_outputs.ignored_seq_groups)

        # Log stats.
        if self.log_stats:
            self.stat_logger.log(self._get_stats(scheduler_outputs))

        return request_outputs

    def do_log_stats(self) -> None:
        """Forced log when no requests active."""
        if self.log_stats:
            self.stat_logger.log(self._get_stats(scheduler_outputs=None))

    def _get_stats(self,
                   scheduler_outputs: Optional[SchedulerOutputs]) -> Stats:
        """Get Stats to be Logged to Prometheus."""
        now = time.time()

        # KV Cache Usage in %.
        num_total_gpu = self.cache_config.num_gpu_blocks
        num_free_gpu = self.scheduler.block_manager.get_num_free_gpu_blocks()
        gpu_cache_usage = 1.0 - (num_free_gpu / num_total_gpu)

        num_total_cpu = self.cache_config.num_cpu_blocks
        cpu_cache_usage = 0.
        if num_total_cpu > 0:
            num_free_cpu = self.scheduler.block_manager.get_num_free_cpu_blocks(
            )
            cpu_cache_usage = 1.0 - (num_free_cpu / num_total_cpu)

        # Scheduler State
        num_running = len(self.scheduler.running)
        num_swapped = len(self.scheduler.swapped)
        num_waiting = len(self.scheduler.waiting)

        # Iteration stats if we have scheduler output.
        num_prompt_tokens = 0
        num_generation_tokens = 0
        time_to_first_tokens = []
        time_per_output_tokens = []
        time_e2e_requests = []
        if scheduler_outputs is not None:
            prompt_run = scheduler_outputs.num_prefill_groups > 0

            # Number of Tokens.
            if prompt_run:
                num_prompt_tokens = sum(
                    len(scheduled_seq_group.seq_group.prompt_token_ids)
                    for scheduled_seq_group in
                    scheduler_outputs.scheduled_seq_groups)
                num_generation_tokens = sum(
                    scheduled_seq_group.seq_group.num_seqs()
                    for scheduled_seq_group in
                    scheduler_outputs.scheduled_seq_groups)
            else:
                num_generation_tokens = scheduler_outputs.num_batched_tokens

            # Latency Timings.
            time_last_iters = []
            for scheduled_seq_group in scheduler_outputs.scheduled_seq_groups:
                seq_group = scheduled_seq_group.seq_group
                # Time since last token.
                # (n.b. updates seq_group.metrics.last_token_time)
                time_last_iters.append(seq_group.get_last_latency(now))
                # Time since arrival for all finished requests.
                if seq_group.is_finished():
                    time_e2e_requests.append(now -
                                             seq_group.metrics.arrival_time)

            time_to_first_tokens = time_last_iters if prompt_run else []
            time_per_output_tokens = [] if prompt_run else time_last_iters

        return Stats(
            now=now,
            num_running=num_running,
            num_swapped=num_swapped,
            num_waiting=num_waiting,
            gpu_cache_usage=gpu_cache_usage,
            cpu_cache_usage=cpu_cache_usage,
            num_prompt_tokens=num_prompt_tokens,
            num_generation_tokens=num_generation_tokens,
            time_to_first_tokens=time_to_first_tokens,
            time_per_output_tokens=time_per_output_tokens,
            time_e2e_requests=time_e2e_requests,
        )

    def add_lora(self, lora_request: LoRARequest) -> bool:
        return self.model_executor.add_lora(lora_request)

    def remove_lora(self, lora_id: int) -> bool:
        return self.model_executor.remove_lora(lora_id)

    def list_loras(self) -> List[int]:
        return self.model_executor.list_loras()

    def check_health(self) -> None:
        self.model_executor.check_health()