File size: 37,923 Bytes
4bfb360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
"""A layer that samples the next tokens from the model's outputs."""
import itertools
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn

from vllm.model_executor.layers.ops.sample import sample as sample_triton
from vllm.model_executor.sampling_metadata import (SamplingMetadata,
                                                   SamplingTensors)
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import (Logprob, PromptLogprobs, SampleLogprobs,
                           SamplerOutput, SequenceData, SequenceGroupOutput,
                           SequenceOutput)


class Sampler(nn.Module):
    """Samples the next tokens from the model's outputs.

    This layer does the following:
    1. Discard the hidden states that are not used for sampling (i.e., all
        tokens except the final one in each prompt).
    2. Compute the logits for the next tokens.
    3. Apply presence, frequency and repetition penalties.
    4. Apply temperature scaling.
    5. Apply top-p and top-k truncation.
    6. Sample the next tokens.
    Here, each sequence group within the batch can have different sampling
    parameters (e.g., sampling method, temperature, top-p, top-k, etc.).

    The structure of the logits tensor is coupled with the seq_groups in
    sampling_metadata. Typically, each sequence in each seq_group has one row in
    logits for the next token to be sampled; however, for a seq_group with a
    prompt request with the prompt_logprobs sampling parameter, there are rows
    in logits for each token in the input prompt.
    """

    def __init__(self, cfg_scale=1.0):
        super().__init__()
        self.cfg_scale = cfg_scale
        # Whether or not the SamplerOutput should have on-device tensors
        # containing the sampled token ids and probabilities. This is used by
        # speculative decoding.
        self.include_gpu_probs_tensor = False

    def forward(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        assert logits is not None
        _, vocab_size = logits.shape

        if self.cfg_scale > 1.0:
            logits_combined = logits
            cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
            logits = uncond_logits + (cond_logits - uncond_logits) * self.cfg_scale
            logits = torch.cat([logits, logits], dim=0)
        
        # Apply min_tokens penalty which sets stop tokens to -inf if min_tokens
        # have not been generated yet
        logits = _apply_min_tokens_penalty(logits, sampling_metadata)

        # Prepare sampling tensors with pinned memory to avoid blocking.
        (sampling_tensors, do_penalties, do_top_p_top_k,
         do_min_p) = SamplingTensors.from_sampling_metadata(
             sampling_metadata, vocab_size, logits.device, logits.dtype)

        # Apply presence and frequency penalties.
        if do_penalties:
            logits = _apply_penalties(logits, sampling_tensors.prompt_tokens,
                                      sampling_tensors.output_tokens,
                                      sampling_tensors.presence_penalties,
                                      sampling_tensors.frequency_penalties,
                                      sampling_tensors.repetition_penalties)

        # Apply temperature scaling.
        # Use in-place division to avoid creating a new tensor.
        logits.div_(sampling_tensors.temperatures.unsqueeze_(dim=1))

        if do_top_p_top_k:
            logits = _apply_top_k_top_p(logits, sampling_tensors.top_ps,
                                        sampling_tensors.top_ks)

        if do_min_p:
            logits = _apply_min_p(logits, sampling_tensors.min_ps)

        # We use float32 for probabilities and log probabilities.
        # Compute the probabilities.
        probs = torch.softmax(logits, dim=-1, dtype=torch.float)
        # Compute the log probabilities.
        # Use log_softmax to ensure numerical stability.
        logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float)

        # Sample the next tokens.
        sample_results, maybe_sampled_tokens_tensor = _sample(
            probs,
            logprobs,
            sampling_metadata,
            sampling_tensors,
            include_gpu_probs_tensor=self.include_gpu_probs_tensor,
            modify_greedy_probs=self._should_modify_greedy_probs_inplace,
        )

        
        if self.cfg_scale > 1.0:
            cond_result = sample_results[:len(sample_results) // 2]
            sample_results = cond_result + cond_result


        if self.include_gpu_probs_tensor:
            assert maybe_sampled_tokens_tensor is not None
            sampled_tokens_tensor = maybe_sampled_tokens_tensor
            on_device_tensors = (probs, sampled_tokens_tensor)
        else:
            on_device_tensors = None

        # Get the logprobs query results.
        prompt_logprobs, sample_logprobs = _get_logprobs(
            logprobs, sampling_metadata, sample_results)
        return _build_sampler_output(sample_results,
                                     sampling_metadata,
                                     prompt_logprobs,
                                     sample_logprobs,
                                     on_device_tensors=on_device_tensors)

    @property
    def _should_modify_greedy_probs_inplace(self) -> bool:
        """Whether or not the sampler should modify the probability distribution
        of greedily-sampled tokens such that multinomial sampling would sample
        the greedily-sampled token.

        In other words, if True then we set the probability of the greedily-
        sampled token to 1.

        This is used by speculative decoding, which requires that the sampling
        method be encoded into the probability distribution.
        """
        # Modify greedy probs if include_gpu_probs_tensor is set.
        return self.include_gpu_probs_tensor


def _get_bin_counts_and_mask(
    tokens: torch.Tensor,
    vocab_size: int,
    num_seqs: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # Compute the bin counts for the tokens.
    # vocab_size + 1 for padding.
    bin_counts = torch.zeros((num_seqs, vocab_size + 1),
                             dtype=torch.long,
                             device=tokens.device)
    bin_counts.scatter_add_(1, tokens, torch.ones_like(tokens))
    bin_counts = bin_counts[:, :vocab_size]
    mask = bin_counts > 0

    return bin_counts, mask


def _apply_min_tokens_penalty(
    logits: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
    # list of indices in logits that will be set to -inf
    logits_to_penalize = []
    start_idx = 0
    for i, seq_group in enumerate(sampling_metadata.seq_groups):
        seq_ids, sampling_params = seq_group

        # handle prompt_logprobs by skipping rows in logits added for the prompt
        # tokens (prompt logprobs are not penalized)
        if (i < sampling_metadata.num_prompts
                and sampling_params.prompt_logprobs is not None):
            assert len(seq_ids) == 1
            start_idx += sampling_metadata.prompt_lens[i] - 1

        min_tokens = sampling_params.min_tokens
        if min_tokens > 0:
            seqs_to_penalize = []
            for i, seq_id in enumerate(seq_ids):
                seq_data = sampling_metadata.seq_data[seq_id]
                if len(seq_data.output_token_ids) < min_tokens:
                    seqs_to_penalize.append(i)

            if seqs_to_penalize:
                # convert to the index into logits
                seqs_to_penalize = [start_idx + i for i in seqs_to_penalize]
                # use set() to remove any duplicates
                token_ids_to_penalize = set(sampling_params.stop_token_ids +
                                            [sampling_params.eos_token_id])
                # itertools.product pairs each seq index with every token id
                logits_to_penalize.extend(
                    itertools.product(seqs_to_penalize, token_ids_to_penalize))

        start_idx += len(seq_ids)

    if logits_to_penalize:
        # use zip and * to group indices along each dimension
        # eg. [ (1,2), (1,3), (5,6) ] -> ( (1,1,5), (2,3,6) )
        logits[tuple(zip(*logits_to_penalize))] = -float("inf")

    # verifies that no rows in logits were missed unexpectedly
    assert start_idx == logits.shape[0]
    return logits


def _apply_penalties(logits: torch.Tensor, prompt_tokens_tensor: torch.Tensor,
                     output_tokens_tensor: torch.Tensor,
                     presence_penalties: torch.Tensor,
                     frequency_penalties: torch.Tensor,
                     repetition_penalties: torch.Tensor) -> torch.Tensor:
    num_seqs, vocab_size = logits.shape
    _, prompt_mask = _get_bin_counts_and_mask(prompt_tokens_tensor, vocab_size,
                                              num_seqs)
    output_bin_counts, output_mask = _get_bin_counts_and_mask(
        output_tokens_tensor, vocab_size, num_seqs)

    repetition_penalties = repetition_penalties[:, None].repeat(1, vocab_size)
    repetition_penalties[~(prompt_mask | output_mask)] = 1.0
    logits = torch.where(logits > 0, logits / repetition_penalties,
                         logits * repetition_penalties)

    # We follow the definition in OpenAI API.
    # Refer to https://platform.openai.com/docs/api-reference/parameter-details
    logits -= frequency_penalties.unsqueeze_(dim=1) * output_bin_counts
    logits -= presence_penalties.unsqueeze_(dim=1) * output_mask
    return logits


def _apply_top_k_top_p(
    logits: torch.Tensor,
    p: torch.Tensor,
    k: torch.Tensor,
) -> torch.Tensor:
    logits_sort, logits_idx = logits.sort(dim=-1, descending=False)

    # Apply top-k.
    top_k_mask = logits_sort.size(1) - k.to(torch.long)
    # Get all the top_k values.
    top_k_mask = logits_sort.gather(1, top_k_mask.unsqueeze(dim=1))
    top_k_mask = logits_sort < top_k_mask
    logits_sort.masked_fill_(top_k_mask, -float("inf"))

    # Apply top-p.
    probs_sort = logits_sort.softmax(dim=-1)
    probs_sum = probs_sort.cumsum(dim=-1)
    top_p_mask = probs_sum <= 1 - p.unsqueeze(dim=1)
    # at least one
    top_p_mask[:, -1] = False
    logits_sort.masked_fill_(top_p_mask, -float("inf"))

    # Re-sort the probabilities.
    src = torch.arange(logits_idx.shape[-1],
                       device=logits_idx.device).expand_as(logits_idx)
    logits_idx_inv = torch.empty_like(logits_idx).scatter_(dim=-1,
                                                           index=logits_idx,
                                                           src=src)
    logits = torch.gather(logits_sort, dim=-1, index=logits_idx_inv)
    return logits


def _apply_min_p(
    logits: torch.Tensor,
    min_p: torch.Tensor,
) -> torch.Tensor:
    """
    Adapted from
    https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
    """
    probs = torch.softmax(logits, dim=-1)
    top_probs, _ = probs.max(dim=-1, keepdim=True)
    scaled_min_p = min_p.unsqueeze_(dim=1) * top_probs
    tokens_to_remove = probs < scaled_min_p
    logits = logits.masked_fill_(tokens_to_remove, -float("inf"))

    return logits


def _greedy_sample(
    selected_seq_groups: List[Tuple[List[int], SamplingParams]],
    samples: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
    samples = samples.tolist()
    sample_idx = 0
    results = []
    for seq_group in selected_seq_groups:
        seq_ids, _ = seq_group
        num_parent_seqs = len(seq_ids)
        assert num_parent_seqs == 1, (
            "Greedy sampling should have only one seq.")
        parent_ids = list(range(num_parent_seqs))
        next_token_ids = [samples[sample_idx]]
        results.append((next_token_ids, parent_ids))
        sample_idx += num_parent_seqs
    return results


def _random_sample(
    selected_seq_groups: List[Tuple[List[int], SamplingParams]],
    is_prompts: List[bool],
    random_samples: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
    # Find the maximum best_of value of the prompt phase requests.
    random_samples = random_samples.cpu()
    sample_idx = 0
    results = []
    for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
        seq_ids, sampling_params = seq_group
        num_parent_seqs = len(seq_ids)
        if is_prompt:
            # Prompt phase.
            parent_ids = [0] * sampling_params.best_of
            next_token_ids = random_samples[
                sample_idx, :sampling_params.best_of].tolist()
        else:
            # Generation phase.
            parent_ids = list(range(num_parent_seqs))
            next_token_ids = random_samples[sample_idx:sample_idx +
                                            num_parent_seqs, 0].tolist()
        results.append((next_token_ids, parent_ids))
        sample_idx += num_parent_seqs
    return results


def _beam_search_sample(
    selected_seq_groups: List[Tuple[List[int], SamplingParams]],
    is_prompts: List[bool],
    seq_data: Dict[int, SequenceData],
    logprobs: torch.Tensor,
) -> List[Tuple[List[int], List[int]]]:
    # We sample 2 * beam_width candidates to make sure that with high
    # probability we can get `beam_width` candidates in addition to
    # the finished sequences for the next iteration. See
    # https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563
    # for details. See also HF reference:
    # https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065
    #
    # NOTE: Beam search is not vectorized, so its speed can be slower than
    # other sampling methods.
    sample_idx = 0
    results = []
    for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
        seq_ids, sampling_params = seq_group
        num_parent_seqs = len(seq_ids)
        beam_width = sampling_params.best_of
        seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs]
        if is_prompt:
            # Prompt phase.
            assert num_parent_seqs == 1, (
                "Prompt input should have only one seq.")
            parent_ids = [0] * (2 * beam_width)
            _, next_token_ids = torch.topk(seq_group_logprobs[0],
                                           2 * beam_width)
            next_token_ids = next_token_ids.tolist()
        else:
            # Generation phase.
            cumulative_logprobs = [
                seq_data[seq_id].cumulative_logprob for seq_id in seq_ids
            ]
            cumulative_logprobs = torch.tensor(
                cumulative_logprobs,
                dtype=torch.float,
                device=seq_group_logprobs.device)
            seq_group_logprobs = (seq_group_logprobs +
                                  cumulative_logprobs.unsqueeze(dim=1))
            _, topk_ids = torch.topk(seq_group_logprobs.flatten(),
                                     2 * beam_width)
            topk_ids = topk_ids.tolist()
            vocab_size = seq_group_logprobs.size(-1)
            parent_ids = [i // vocab_size for i in topk_ids]
            next_token_ids = [i % vocab_size for i in topk_ids]
        results.append((next_token_ids, parent_ids))
        sample_idx += num_parent_seqs
    assert sample_idx == logprobs.size(0)
    return results


# torch.multinomial forces a GPU<->CPU sync.
# Therefore, we use an optimized implementation instead.
# Note that we always sample with replacement.
# probs will be modified in place, but this is fine, as we pass
# in a copy already.
def _multinomial(
    probs: torch.Tensor,
    num_samples: int,
    seq_groups: Optional[List[Tuple[List[int], SamplingParams]]] = None,
    generators: Optional[List[torch.Generator]] = None,
) -> torch.Tensor:
    if num_samples > 1:
        # This is equivalent to torch.repeat_interleaved (which also
        # forces a GPU<->CPU sync).
        # This allows us to do sampling with replacement by creating
        # num_samples copies of each row in the tensor, and then
        # batch sampling the resulting tensor.
        probs = probs[:, None, :].expand(probs.shape[0], num_samples,
                                         probs.shape[1]).contiguous().view(
                                             -1, probs.shape[1])
    q = torch.empty_like(probs)
    if seq_groups is None:
        q.exponential_()
    else:
        sample_idx = 0
        for (seq_ids, _), generator in zip(seq_groups, generators):
            next_sample_idx = sample_idx + len(seq_ids) * num_samples
            q[sample_idx:next_sample_idx].exponential_(generator=generator)
            sample_idx = next_sample_idx
    return probs.div_(q).argmax(dim=1).view(-1, num_samples)


def _sample_with_torch(
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    sampling_metadata: SamplingMetadata,
    include_gpu_probs_tensor: bool,
    modify_greedy_probs: bool,
) -> Tuple[List[Tuple[List[int], List[int]]], Optional[torch.Tensor]]:
    categorized_seq_group_ids = {t: [] for t in SamplingType}
    categorized_sample_indices = sampling_metadata.categorized_sample_indices
    for i, seq_group in enumerate(sampling_metadata.seq_groups):
        _, sampling_params = seq_group
        sampling_type = sampling_params.sampling_type
        categorized_seq_group_ids[sampling_type].append(i)

    sample_results_dict: Dict[int, Tuple[List[int], List[int]]] = {}
    sample_metadata = {}
    multinomial_samples = {}

    # Create output tensor for sampled token ids.
    if include_gpu_probs_tensor:
        sampled_token_ids_tensor = torch.empty(logprobs.shape[0],
                                               1,
                                               dtype=torch.long,
                                               device=logprobs.device)
    else:
        sampled_token_ids_tensor = None

    # Counterintiutively, having two loops here is actually faster.
    # The first loop can run without waiting on GPU<->CPU sync.
    for sampling_type in SamplingType:
        sample_indices = categorized_sample_indices[sampling_type][:, 0]
        num_tokens = len(sample_indices)
        if num_tokens == 0:
            continue
        seq_group_ids = categorized_seq_group_ids[sampling_type]
        seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_ids]
        is_prompts = [i < sampling_metadata.num_prompts for i in seq_group_ids]
        sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
                                          is_prompts, sample_indices)
        long_sample_indices = sample_indices.long()

        if sampling_type == SamplingType.GREEDY:
            greedy_samples = torch.argmax(logprobs[long_sample_indices],
                                          dim=-1)

            if include_gpu_probs_tensor:
                # Store sampled tokens in output tensor.
                sampled_token_ids_tensor[
                    long_sample_indices] = greedy_samples.unsqueeze(-1)

            if modify_greedy_probs:
                # If required, modify the probabilities such that sampling from
                # the modified distribution would always sample the argmax
                # token id.
                _modify_greedy_probs_inplace(logprobs, probs,
                                             long_sample_indices,
                                             greedy_samples)

        elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
            max_best_of_in_batch = 1
            for seq_group, is_prompt in zip(seq_groups, is_prompts):
                if is_prompt:
                    _, sampling_params = seq_group
                    max_best_of_in_batch = max(max_best_of_in_batch,
                                               sampling_params.best_of)
            seeded_args = {} if sampling_type == SamplingType.RANDOM else {
                "seq_groups": seq_groups,
                "generators": sampling_metadata.generators,
            }

            multinomial_samples[sampling_type] = _multinomial(
                probs[long_sample_indices], max_best_of_in_batch,
                **seeded_args)

            if include_gpu_probs_tensor:
                # Store sampled tokens in output tensor.
                sampled_token_ids_tensor[
                    long_sample_indices] = multinomial_samples[sampling_type]

        elif sampling_type == SamplingType.BEAM:
            beam_search_logprobs = logprobs[sample_indices]
        else:
            raise ValueError(f"Unsupported sampling type: {sampling_type}")

    # GPU<->CPU sync happens in the loop below.
    # This also converts the sample output to Python objects.

    for sampling_type in SamplingType:
        if sampling_type not in sample_metadata:
            continue
        seq_group_ids, seq_groups, is_prompts, sample_indices = sample_metadata[
            sampling_type]
        if sampling_type == SamplingType.GREEDY:
            sample_results = _greedy_sample(seq_groups, greedy_samples)
        elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
            sample_results = _random_sample(seq_groups, is_prompts,
                                            multinomial_samples[sampling_type])
        elif sampling_type == SamplingType.BEAM:
            sample_results = _beam_search_sample(seq_groups, is_prompts,
                                                 sampling_metadata.seq_data,
                                                 beam_search_logprobs)
        sample_results_dict.update(zip(seq_group_ids, sample_results))

    sample_results = [
        sample_results_dict[i]
        for i in range(len(sampling_metadata.seq_groups))
    ]
    return sample_results, sampled_token_ids_tensor


def _sample_with_triton_kernel(
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    sampling_metadata: SamplingMetadata,
    sampling_tensors: SamplingTensors,
) -> List[Tuple[List[int], List[int]]]:
    categorized_seq_group_ids = {t: [] for t in SamplingType}
    categorized_sample_indices = sampling_metadata.categorized_sample_indices
    for i, seq_group in enumerate(sampling_metadata.seq_groups):
        _, sampling_params = seq_group
        sampling_type = sampling_params.sampling_type
        categorized_seq_group_ids[sampling_type].append(i)

    sample_results_dict: Dict[int, Tuple[List[int], List[int]]] = {}
    sample_metadata = {}
    max_best_of_in_batch = 1

    # Counterintiutively, having two loops here is actually faster.
    # The first loop can run without waiting on GPU<->CPU sync.
    for sampling_type in SamplingType:
        sample_indices = categorized_sample_indices[sampling_type][:, 0]
        sampled_token_indices = categorized_sample_indices[sampling_type][:, 1]
        num_tokens = len(sample_indices)
        if num_tokens == 0:
            continue
        seq_group_ids = categorized_seq_group_ids[sampling_type]
        seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_ids]
        is_prompts = [i < sampling_metadata.num_prompts for i in seq_group_ids]
        sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
                                          is_prompts, sample_indices,
                                          sampled_token_indices)
        if sampling_type in (SamplingType.GREEDY, SamplingType.RANDOM,
                             SamplingType.RANDOM_SEED):
            for seq_group, is_prompt in zip(seq_groups, is_prompts):
                if is_prompt:
                    _, sampling_params = seq_group
                    max_best_of_in_batch = max(max_best_of_in_batch,
                                               sampling_params.best_of)
        elif sampling_type == SamplingType.BEAM:
            beam_search_logprobs = logprobs[sample_indices]
        else:
            raise ValueError(f"Unsupported sampling type: {sampling_type}")

    sampled_tokens, _, _ = sample_triton(
        probs=probs,
        seeds=sampling_tensors.sampling_seeds,
        max_best_of=max_best_of_in_batch,
        sample_indices=sampling_tensors.sample_indices,
        logprobs=logprobs,
        # don't save logprobs because we have logic for that below
        # TODO: use this instead of the CPU-based logic below
        save_logprobs=False,
    )

    # GPU<->CPU sync happens in the loop below.

    for sampling_type in SamplingType:
        if sampling_type not in sample_metadata:
            continue
        (seq_group_ids, seq_groups, is_prompts, sample_indices,
         sampled_token_indices) = sample_metadata[sampling_type]
        if sampling_type == SamplingType.GREEDY:
            sample_results = _greedy_sample(
                seq_groups, sampled_tokens[sampled_token_indices][:, 0])
        elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
            sample_results = _random_sample(
                seq_groups, is_prompts, sampled_tokens[sampled_token_indices])
        elif sampling_type == SamplingType.BEAM:
            sample_results = _beam_search_sample(seq_groups, is_prompts,
                                                 sampling_metadata.seq_data,
                                                 beam_search_logprobs)
        sample_results_dict.update(zip(seq_group_ids, sample_results))

    sample_results = [
        sample_results_dict[i]
        for i in range(len(sampling_metadata.seq_groups))
    ]
    return sample_results


def _sample(
    probs: torch.Tensor, logprobs: torch.Tensor,
    sampling_metadata: SamplingMetadata, sampling_tensors: SamplingTensors,
    include_gpu_probs_tensor: bool, modify_greedy_probs: bool
) -> Tuple[List[Tuple[List[int], List[int]]], Optional[torch.Tensor]]:
    return _sample_with_torch(
        probs,
        logprobs,
        sampling_metadata,
        include_gpu_probs_tensor=include_gpu_probs_tensor,
        modify_greedy_probs=modify_greedy_probs,
    )

    # TODO: Enable once Triton kernel & associated code is faster.
    # return _sample_with_triton_kernel(probs, logprobs, sampling_metadata,
    #                                   sampling_tensors)


def _get_ranks(x: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
    """
    This function calculates the ranks of the chosen tokens in a logprob tensor.

    Args:
        x (torch.Tensor): 2D logprob tensor of shape (N, M)
                        where N is the no. of tokens and M is the vocab dim.
        indices (torch.Tensor): List of chosen token indices.

    Returns:
        torch.Tensor: 1D tensor of shape (N,) where N is the no. of tokens.
                    Each element in the returned tensor represents the rank 
                    of the chosen token in the input logprob tensor.
    """
    vals = x[torch.arange(0, len(x), device=x.device, dtype=indices.dtype),
             indices]
    return (x > vals[:, None]).long().sum(1).add_(1)


def _get_logprobs(
    logprobs: torch.Tensor,
    sampling_metadata: SamplingMetadata,
    sample_results: List[Tuple[List[int], List[int]]],
) -> Tuple[List[Optional[List[Optional[Dict[int, float]]]]], List[List[Dict[
        int, float]]]]:
    # Prepare query indices
    batched_logprobs_query_seq_indices: List[int] = []
    batched_logprobs_query_token_indices: List[int] = []
    # at least get one logprob for each token
    largest_num_logprobs = 1
    sample_idx = 0
    for i, (seq_group, sample_result) in enumerate(
            zip(sampling_metadata.seq_groups, sample_results)):
        seq_ids, sampling_params = seq_group
        next_token_ids, parent_ids = sample_result
        num_parent_seqs = len(seq_ids)
        if (i < sampling_metadata.num_prompts
                and sampling_params.prompt_logprobs is not None):
            largest_num_logprobs = max(largest_num_logprobs,
                                       sampling_params.prompt_logprobs)
            prompt_len = sampling_metadata.prompt_lens[i]
            prompt_tokens = sampling_metadata.seq_data[
                seq_ids[0]].prompt_token_ids
            batched_logprobs_query_seq_indices.extend(
                sample_idx + j for j in range(prompt_len - 1))
            batched_logprobs_query_token_indices.extend(
                token_id for token_id in prompt_tokens[1:])
            sample_idx += prompt_len - 1
        batched_logprobs_query_seq_indices.extend(
            [sample_idx + parent_id for parent_id in parent_ids])
        batched_logprobs_query_token_indices.extend(next_token_ids)
        if sampling_params.logprobs is not None:
            largest_num_logprobs = max(largest_num_logprobs,
                                       sampling_params.logprobs)
        sample_idx += num_parent_seqs
    assert sample_idx == logprobs.size(0)

    batched_logprobs_query_seq_indices_gpu = torch.tensor(
        batched_logprobs_query_seq_indices, device=logprobs.device)
    batched_logprobs_query_token_indices_gpu = torch.tensor(
        batched_logprobs_query_token_indices, device=logprobs.device)

    # Batched query for logprobs of selected token
    batched_logprobs_query_result = logprobs[[
        batched_logprobs_query_seq_indices_gpu,
        batched_logprobs_query_token_indices_gpu
    ]]

    batched_ranks_query_result = _get_ranks(
        logprobs[batched_logprobs_query_seq_indices_gpu],
        batched_logprobs_query_token_indices_gpu)

    # Batched query for logprobs of topk tokens
    if largest_num_logprobs > 0:
        top_logprobs, top_token_ids = torch.topk(logprobs,
                                                 largest_num_logprobs,
                                                 dim=-1)
        top_logprobs = top_logprobs.cpu()
        top_token_ids = top_token_ids.cpu()
    else:
        top_logprobs, top_token_ids = None, None

    batched_logprobs_query_result = batched_logprobs_query_result.cpu()
    batched_ranks_query_result = batched_ranks_query_result.cpu()

    # Gather results
    result_prompt_logprobs: List[Optional[PromptLogprobs]] = []
    result_sample_logprobs: List[SampleLogprobs] = []
    sample_idx = 0
    query_result_idx = 0
    for i, (seq_group, sample_result) in enumerate(
            zip(sampling_metadata.seq_groups, sample_results)):
        seq_ids, sampling_params = seq_group
        next_token_ids, parent_ids = sample_result

        # Prompt logprobs
        if (i < sampling_metadata.num_prompts
                and sampling_params.prompt_logprobs is not None):
            num_logprobs = sampling_params.prompt_logprobs
            prompt_tokens = sampling_metadata.seq_data[
                seq_ids[0]].prompt_token_ids
            group_prompt_logprobs: PromptLogprobs = [None]
            for token_id in prompt_tokens[1:]:
                prompt_logprobs_dict = {
                    token_id:
                    (batched_logprobs_query_result[query_result_idx].item(),
                     batched_ranks_query_result[query_result_idx].item())
                }
                if num_logprobs > 0:
                    prompt_logprobs_dict.update(
                        zip(
                            top_token_ids[sample_idx, :num_logprobs].tolist(),
                            zip(
                                top_logprobs[
                                    sample_idx, :num_logprobs].tolist(),
                                range(1, num_logprobs + 1))))
                group_prompt_logprobs.append({
                    token_id: Logprob(*logprob_rank)
                    for token_id, logprob_rank in prompt_logprobs_dict.items()
                })
                sample_idx += 1
                query_result_idx += 1
            result_prompt_logprobs.append(group_prompt_logprobs)
        else:
            result_prompt_logprobs.append(None)

        # Sample logprobs
        num_logprobs = sampling_params.logprobs
        if num_logprobs is None:
            num_logprobs = 0
        group_sample_logprobs: SampleLogprobs = []
        for next_token_id, parent_id in zip(next_token_ids, parent_ids):
            sample_logprobs_dict = {
                next_token_id:
                (batched_logprobs_query_result[query_result_idx].item(),
                 batched_ranks_query_result[query_result_idx].item())
            }
            query_result_idx += 1
            if num_logprobs >= 0:
                sample_logprobs_dict.update(
                    zip(
                        top_token_ids[sample_idx +
                                      parent_id, :num_logprobs].tolist(),
                        zip(
                            top_logprobs[sample_idx +
                                         parent_id, :num_logprobs].tolist(),
                            range(1, num_logprobs + 1))))
            group_sample_logprobs.append({
                token_id: Logprob(*logprob_rank)
                for token_id, logprob_rank in sample_logprobs_dict.items()
            })
        result_sample_logprobs.append(group_sample_logprobs)
        sample_idx += len(seq_ids)

    return result_prompt_logprobs, result_sample_logprobs


def _modify_greedy_probs_inplace(logprobs: torch.Tensor, probs: torch.Tensor,
                                 sample_indices: torch.Tensor,
                                 greedy_samples: torch.Tensor) -> None:
    """Modify the probability distributions of the greedily-sampled tokens such
    that each sampled token has a "probability" of 1.0. This is required by
    speculative decoding, which depends on the sampling method being encoded
    within the probability distribution for correctness.

    # Why do we only need to do this for greedy sampling?

    vLLM's sampler performs the following steps for greedy or multinomial
    (random) sampling:
        1. Get logits from model.
        2. Modify logits according to per-sequence sampling parameters.
            - Multiply by temperature, top-k and top-p masking, penalize tokens
                according to their frequency, etc.
        3. Sample a token.
            - Random sampling simply samples from the modified probability
                distribution.
            - Greedy sampling performs `argmax` to obtain the token with the
                highest likelihood.
    
    Ignoring greedy sampling for a moment, we find that the computed probability
    distribution has the following property: we can sample from it independently
    and find that the token sampled by the Sampler has a frequency corresponding
    to how often we see it in our sampling. In other words, for tokens sampled
    with vLLM's random SamplingType, the computed probability distribution
    encodes the sampling methodology completely.

    Greedy sampling does not normally have this property. vLLM modifies logits
    according to sampling params, then performs `argmax`, then returns the
    sampled token and the computed probability distribution. If we sample from
    the distribution, we'll find the likelihood of the greedily-sampled token
    is not always 1.0.

    Since lossless speculative decoding requires that the sampling methodology
    be encoded within the probability distribution, we are motivated to modify
    the probability distribution such that the sampled token has probability 1
    when speculative decoding is used.

    NOTE: Alternatively, we could use an extremely low temperature to achieve
    greedy sampling using multinomial computation and unite the codepaths. This
    has implications on the overall design of the sampler, e.g. how to record
    accurate logprobs for the user, so this improvement is deferred to later.
    """
    logprobs[sample_indices, :] = -float('inf')
    logprobs[sample_indices, greedy_samples] = 0.0
    probs[sample_indices, :] = 0
    probs[sample_indices, greedy_samples] = 1.0


def _build_sampler_output(
    sample_results: List[Tuple[List[int], List[int]]],
    sampling_metadata: SamplingMetadata,
    prompt_logprobs: List[Optional[PromptLogprobs]],
    sample_logprobs: List[SampleLogprobs],
    on_device_tensors: Optional[Tuple[torch.Tensor, torch.Tensor]],
) -> SamplerOutput:
    """Construct Python objects with the output of sampling.

    Args:
        on_device_tensors: Tuple containing on-device tensors with the
            probabilities used in sampling and the sampled token ids. This
            allows post-processing without copies to CPU/serialization, e.g. in
            speculative decoding rejection sampling.
    """

    sampler_output = []
    for (seq_group, sample_result, group_prompt_logprobs,
         group_sample_logprobs) in zip(sampling_metadata.seq_groups,
                                       sample_results, prompt_logprobs,
                                       sample_logprobs):
        seq_ids, _ = seq_group
        next_token_ids, parent_ids = sample_result
        seq_outputs = []
        for parent_id, next_token_id, logprobs in zip(parent_ids,
                                                      next_token_ids,
                                                      group_sample_logprobs):
            seq_outputs.append(
                SequenceOutput(seq_ids[parent_id], next_token_id, logprobs))
        sampler_output.append(
            SequenceGroupOutput(seq_outputs, group_prompt_logprobs))

    # If not specified, store None values in SamplerOutput.
    if on_device_tensors is not None:
        sampled_token_probs, sampled_token_ids = on_device_tensors
    else:
        sampled_token_probs, sampled_token_ids = (None, None)

    return SamplerOutput(
        outputs=sampler_output,
        sampled_token_probs=sampled_token_probs,
        sampled_token_ids=sampled_token_ids,
    )