from dataclasses import dataclass from typing import Optional, List import torch import torch.nn as nn from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import SamplerOutput from vllm.attention import AttentionMetadata from vllm.attention import Attention as pagedAttention from vllm.model_executor.layers.logits_processor import LogitsProcessor from serve.sampler import Sampler def find_multiple(n: int, k: int): if n % k == 0: return n return n + k - (n % k) @dataclass class ModelArgs: dim: int = 4096 n_layer: int = 32 n_head: int = 32 n_kv_head: Optional[int] = None multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 ffn_dim_multiplier: Optional[float] = None rope_base: float = 10000 norm_eps: float = 1e-5 initializer_range: float = 0.02 num_classes: int = 1000 class_dropout_prob: float = 0.1 model_type: str = 'c2i' cfg_scale: float = 4.0 vocab_size: int = 16384 cls_token_num: int = 1 block_size: int = 256 max_batch_size: int = 32 max_seq_len: int = 2048 ################################################################################# # Embedding Layers for Class Labels # ################################################################################# class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob # def token_drop(self, labels, force_drop_ids=None): # """ # Drops labels to enable classifier-free guidance. # """ # if force_drop_ids is None: # drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob # else: # drop_ids = force_drop_ids == 1 # labels = torch.where(drop_ids, self.num_classes, labels) # return labels # def forward(self, labels, train, force_drop_ids=None): def forward(self, labels): # use_dropout = self.dropout_prob > 0 # if (train and use_dropout) or (force_drop_ids is not None): # labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings ################################################################################# # GPT Model # ################################################################################# # class RMSNorm(torch.nn.Module): # def __init__(self, dim: int, eps: float = 1e-5): # super().__init__() # self.eps = eps # self.weight = nn.Parameter(torch.ones(dim)) # def _norm(self, x): # return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) # def forward(self, x): # output = self._norm(x.float()).type_as(x) # return output * self.weight class FeedForward(nn.Module): def __init__(self, config: ModelArgs): super().__init__() hidden_dim = 4 * config.dim hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if config.ffn_dim_multiplier is not None: hidden_dim = int(config.ffn_dim_multiplier * hidden_dim) hidden_dim = find_multiple(hidden_dim, config.multiple_of) # self.w1 = nn.Linear(config.dim, hidden_dim, bias=False) # self.w3 = nn.Linear(config.dim, hidden_dim, bias=False) self.w_merged = nn.Linear(config.dim, hidden_dim * 2, bias=False) self.act_fn = SiluAndMul() self.w2 = nn.Linear(hidden_dim, config.dim, bias=False) # self.ffn_dropout = nn.Dropout(config.ffn_dropout_p) # def forward(self, x): # return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) def forward(self, x): x = self.w_merged(x) x = self.act_fn(x) x = self.w2(x) # return self.ffn_dropout(x) return x class Attention(nn.Module): def __init__(self, config: ModelArgs): super().__init__() assert config.dim % config.n_head == 0 self.dim = config.dim self.head_dim = config.dim // config.n_head self.n_head = config.n_head self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim # key, query, value projections for all heads, but in a batch self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False) self.wo = nn.Linear(config.dim, config.dim, bias=False) # pagedAttention self.attn = pagedAttention(self.n_head, self.head_dim, self.head_dim**-0.5, num_kv_heads=self.n_kv_head, ) # 2d rotary pos embedding grid_size = int(config.block_size ** 0.5) assert grid_size * grid_size == config.block_size freqs_cis = precompute_freqs_cis_2d(grid_size, config.dim // config.n_head, config.rope_base, config.cls_token_num) self.register_buffer('freqs_cis', freqs_cis) def forward( self, x: torch.Tensor, positions: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ): kv_size = self.n_kv_head * self.head_dim xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) xq = xq.view(*xq.shape[:-1], 1, self.n_head, self.head_dim) xk = xk.view(*xk.shape[:-1], 1, self.n_kv_head, self.head_dim) freqs_cis = self.freqs_cis[positions].unsqueeze(1) xq = apply_rotary_emb_bs(xq, freqs_cis) xk = apply_rotary_emb_bs(xk, freqs_cis) xq = xq.flatten(1) xk = xk.flatten(1) output = self.attn(xq, xk, xv, kv_cache, attn_metadata) output = self.wo(output) return output class TransformerBlock(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.attention = Attention(config) self.feed_forward = FeedForward(config) self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) def forward(self, x: torch.Tensor, positions: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata): h = x + self.attention(self.attention_norm(x), positions, kv_cache, attn_metadata) out = h + self.feed_forward(self.ffn_norm(h)) return out class Transformer(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.vocab_size = config.vocab_size self.n_layer = config.n_layer self.block_size = config.block_size self.num_classes = config.num_classes self.model_type = config.model_type self.cls_token_num = config.cls_token_num self.cfg_scale = config.cfg_scale if self.model_type == 'c2i': self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob) else: raise Exception("vllm only supports c2i now, please check model type") self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self.layers = torch.nn.ModuleList() for layer_id in range(config.n_layer): self.layers.append(TransformerBlock(config)) # output layer self.norm = RMSNorm(config.dim, eps=config.norm_eps) self.output = nn.Linear(config.dim, config.vocab_size, bias=False) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler(config.cfg_scale) def forward( self, input_ids: torch.Tensor=None, positions: torch.Tensor=None, kv_caches: List[torch.Tensor]=None, attn_metadata: AttentionMetadata=None, ): # if positions.max() == 0: # prefill in inference # token_embeddings = self.cls_embedding(input_ids) # else: # decode_n_tokens(kv cache) in inference # token_embeddings = self.tok_embeddings(input_ids) cond_ids = torch.clamp(input_ids, max=self.num_classes) token_embeddings = self.cls_embedding(cond_ids) * (positions.max() == 0) + \ self.tok_embeddings(input_ids) * (positions.max() != 0) hh = token_embeddings # transformer blocks for layer_id, layer in enumerate(self.layers): hh = layer(hh, positions, kv_caches[layer_id], attn_metadata) # output layers hh = self.norm(hh) return hh def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: logits = self.logits_processor(self.output.weight, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def custom_load_state_dict(self, model_weights): model_weights = model_weights.copy() for layer_id in range(len(self.layers)): branch1 = f'layers.{layer_id}.feed_forward.w1.weight' branch3 = f'layers.{layer_id}.feed_forward.w3.weight' branch_merged = f'layers.{layer_id}.feed_forward.w_merged.weight' model_weights[branch_merged] = torch.cat( [model_weights[branch1], model_weights[branch3]], dim=0 ) model_weights.pop(branch1) model_weights.pop(branch3) if 'freqs_cis' in model_weights: model_weights.pop('freqs_cis') self.load_state_dict(model_weights, strict=False) ################################################################################# # Rotary Positional Embedding Functions # ################################################################################# # https://github.com/pytorch-labs/gpt-fast/blob/main/model.py def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120): freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2) cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2) return cond_cache def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120): # split the dimension into half, one for x and one for y half_dim = n_elem // 2 freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim)) t = torch.arange(grid_size, device=freqs.device) freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2) freqs_grid = torch.concat([ freqs[:, None, :].expand(-1, grid_size, -1), freqs[None, :, :].expand(grid_size, -1, -1), ], dim=-1) # (grid_size, grid_size, head_dim // 2) cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2) cache = cache_grid.flatten(0, 1) cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2) return cond_cache def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor): # x: (bs, seq_len, n_head, head_dim) # freqs_cis (seq_len, head_dim // 2, 2) xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2) freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2) x_out2 = torch.stack([ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], dim=-1) x_out2 = x_out2.flatten(3) return x_out2.type_as(x) def apply_rotary_emb_bs(x: torch.Tensor, freqs_cis: torch.Tensor): # x: (bs, seq_len, n_head, head_dim) # freqs_cis (seq_len, head_dim // 2, 2) xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2) freqs_cis = freqs_cis.view(xshaped.size(0), xshaped.size(1), 1, xshaped.size(3), 2) # (bs, seq_len, 1, head_dim//2, 2) x_out2 = torch.stack([ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], dim=-1) x_out2 = x_out2.flatten(3) return x_out2.type_as(x) ################################################################################# # GPT Configs # ################################################################################# ### text-conditional def GPT_7B(**kwargs): return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B def GPT_3B(**kwargs): return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B def GPT_1B(**kwargs): return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B ### class-conditional def GPT_XXXL(**kwargs): return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B def GPT_XXL(**kwargs): return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B def GPT_XL(**kwargs): return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M def GPT_L(**kwargs): return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M def GPT_B(**kwargs): return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M GPT_models = { 'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL, 'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B, }