# Modified from: # vLLM: https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/llm.py from typing import List, Optional, Union import argparse import torch from tqdm import tqdm from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast from vllm.engine.arg_utils import EngineArgs # from vllm.engine.llm_engine import LLMEngine from vllm.lora.request import LoRARequest from vllm.outputs import RequestOutput from vllm.sampling_params import SamplingParams from vllm.sequence import MultiModalData from vllm.usage.usage_lib import UsageContext from vllm.utils import Counter from serve.llm_engine import LLMEngine class LLM: """An LLM for generating texts from given prompts and sampling parameters. This class includes a tokenizer, a language model (possibly distributed across multiple GPUs), and GPU memory space allocated for intermediate states (aka KV cache). Given a batch of prompts and sampling parameters, this class generates texts from the model, using an intelligent batching mechanism and efficient memory management. NOTE: This class is intended to be used for offline inference. For online serving, use the `AsyncLLMEngine` class instead. NOTE: For the comprehensive list of arguments, see `EngineArgs`. Args: model: The name or path of a HuggingFace Transformers model. tokenizer: The name or path of a HuggingFace Transformers tokenizer. tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer. skip_tokenizer_init: If true, skip initialization of tokenizer and detokenizer. Expect valid prompt_token_ids and None for prompt from the input. trust_remote_code: Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer. tensor_parallel_size: The number of GPUs to use for distributed execution with tensor parallelism. dtype: The data type for the model weights and activations. Currently, we support `float32`, `float16`, and `bfloat16`. If `auto`, we use the `torch_dtype` attribute specified in the model config file. However, if the `torch_dtype` in the config is `float32`, we will use `float16` instead. quantization: The method used to quantize the model weights. Currently, we support "awq", "gptq", "squeezellm", and "fp8" (experimental). If None, we first check the `quantization_config` attribute in the model config file. If that is None, we assume the model weights are not quantized and use `dtype` to determine the data type of the weights. revision: The specific model version to use. It can be a branch name, a tag name, or a commit id. tokenizer_revision: The specific tokenizer version to use. It can be a branch name, a tag name, or a commit id. seed: The seed to initialize the random number generator for sampling. gpu_memory_utilization: The ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV cache. Higher values will increase the KV cache size and thus improve the model's throughput. However, if the value is too high, it may cause out-of- memory (OOM) errors. swap_space: The size (GiB) of CPU memory per GPU to use as swap space. This can be used for temporarily storing the states of the requests when their `best_of` sampling parameters are larger than 1. If all requests will have `best_of=1`, you can safely set this to 0. Otherwise, too small values may cause out-of-memory (OOM) errors. enforce_eager: Whether to enforce eager execution. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid. max_context_len_to_capture: Maximum context len covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode. disable_custom_all_reduce: See ParallelConfig """ def __init__( self, args: argparse.ArgumentParser, model: str, tokenizer: Optional[str] = None, tokenizer_mode: str = "auto", skip_tokenizer_init: bool = False, trust_remote_code: bool = False, tensor_parallel_size: int = 1, dtype: str = "auto", quantization: Optional[str] = None, revision: Optional[str] = None, tokenizer_revision: Optional[str] = None, seed: int = 0, gpu_memory_utilization: float = 0.9, swap_space: int = 4, enforce_eager: bool = False, max_context_len_to_capture: int = 8192, disable_custom_all_reduce: bool = False, **kwargs, ) -> None: if "disable_log_stats" not in kwargs: kwargs["disable_log_stats"] = True engine_args = EngineArgs( model=model, tokenizer=tokenizer, tokenizer_mode=tokenizer_mode, skip_tokenizer_init=skip_tokenizer_init, trust_remote_code=trust_remote_code, tensor_parallel_size=tensor_parallel_size, dtype=dtype, quantization=quantization, revision=revision, tokenizer_revision=tokenizer_revision, seed=seed, gpu_memory_utilization=gpu_memory_utilization, swap_space=swap_space, enforce_eager=enforce_eager, max_context_len_to_capture=max_context_len_to_capture, disable_custom_all_reduce=disable_custom_all_reduce, **kwargs, ) self.llm_engine = LLMEngine.from_engine_args( engine_args, usage_context=UsageContext.LLM_CLASS, args=args) self.request_counter = Counter() def get_tokenizer( self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]: return self.llm_engine.tokenizer.tokenizer def set_tokenizer( self, tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], ) -> None: self.llm_engine.tokenizer.tokenizer = tokenizer def generate( self, prompts: Optional[Union[str, List[str]]] = None, sampling_params: Optional[Union[SamplingParams, List[SamplingParams]]] = None, prompt_token_ids: Optional[List[List[int]]] = None, use_tqdm: bool = True, lora_request: Optional[LoRARequest] = None, multi_modal_data: Optional[MultiModalData] = None, ) -> List[RequestOutput]: """Generates the completions for the input prompts. NOTE: This class automatically batches the given prompts, considering the memory constraint. For the best performance, put all of your prompts into a single list and pass it to this method. Args: prompts: A list of prompts to generate completions for. sampling_params: The sampling parameters for text generation. If None, we use the default sampling parameters. When it is a single value, it is applied to every prompt. When it is a list, the list must have the same length as the prompts and it is paired one by one with the prompt. prompt_token_ids: A list of token IDs for the prompts. If None, we use the tokenizer to convert the prompts to token IDs. use_tqdm: Whether to use tqdm to display the progress bar. lora_request: LoRA request to use for generation, if any. multi_modal_data: Multi modal data. Returns: A list of `RequestOutput` objects containing the generated completions in the same order as the input prompts. """ if prompts is None and prompt_token_ids is None: raise ValueError("Either prompts or prompt_token_ids must be " "provided.") if self.llm_engine.model_config.skip_tokenizer_init \ and prompts is not None: raise ValueError("prompts must be None if skip_tokenizer_init " "is True") if isinstance(prompts, str): # Convert a single prompt to a list. prompts = [prompts] if (prompts is not None and prompt_token_ids is not None and len(prompts) != len(prompt_token_ids)): raise ValueError("The lengths of prompts and prompt_token_ids " "must be the same.") if prompts is not None: num_requests = len(prompts) else: assert prompt_token_ids is not None num_requests = len(prompt_token_ids) if sampling_params is None: # Use default sampling params. sampling_params = SamplingParams() elif isinstance(sampling_params, list) and len(sampling_params) != num_requests: raise ValueError("The lengths of prompts and sampling_params " "must be the same.") if multi_modal_data: multi_modal_data.data = multi_modal_data.data.to(torch.float16) # Add requests to the engine. for i in range(num_requests): prompt = prompts[i] if prompts is not None else None token_ids = None if prompt_token_ids is None else prompt_token_ids[i] self._add_request( prompt, sampling_params[i] if isinstance(sampling_params, list) else sampling_params, token_ids, lora_request=lora_request, # Get ith image while maintaining the batch dim. multi_modal_data=MultiModalData( type=multi_modal_data.type, data=multi_modal_data.data[i].unsqueeze(0)) if multi_modal_data else None, ) return self._run_engine(use_tqdm) def _add_request( self, prompt: Optional[str], sampling_params: SamplingParams, prompt_token_ids: Optional[List[int]], lora_request: Optional[LoRARequest] = None, multi_modal_data: Optional[MultiModalData] = None, ) -> None: request_id = str(next(self.request_counter)) self.llm_engine.add_request(request_id, prompt, sampling_params, prompt_token_ids, lora_request=lora_request, multi_modal_data=multi_modal_data) def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]: # Initialize tqdm. if use_tqdm: num_requests = self.llm_engine.get_num_unfinished_requests() pbar = tqdm( total=num_requests, desc="Processed prompts", dynamic_ncols=True, postfix=f"Generation Speed: {0:.2f} toks/s", ) # Run the engine. outputs: List[RequestOutput] = [] while self.llm_engine.has_unfinished_requests(): step_outputs = self.llm_engine.step() for output in step_outputs: if output.finished: outputs.append(output) if use_tqdm: total_toks += (sum( len(stp.token_ids) for stp in output.outputs)) spd = total_toks / pbar.format_dict["elapsed"] pbar.postfix = f"Generation Speed: {spd:.2f} toks/s" pbar.update(1) if use_tqdm: pbar.close() # Sort the outputs by request ID. # This is necessary because some requests may be finished earlier than # its previous requests. outputs = sorted(outputs, key=lambda x: int(x.request_id)) return outputs