pedrororo commited on
Commit
aa3bb8e
·
verified ·
1 Parent(s): 34fca18

Upload 2 files

Browse files
Files changed (2) hide show
  1. app-com_sentenca.py +62 -0
  2. best.pt +3 -0
app-com_sentenca.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+ from ultralytics import YOLO
4
+
5
+ # Load the model once globally
6
+ MODEL_PATH = "best.pt"
7
+ model = YOLO(MODEL_PATH)
8
+
9
+ def detect_and_visualize(image):
10
+ # image is a NumPy array from Gradio
11
+ # Perform inference directly on this array
12
+ results = model(image)
13
+
14
+ # Ensure image is in the correct color space (most likely already RGB)
15
+ annotated_image = image.copy()
16
+
17
+ detections = []
18
+ for result in results:
19
+ boxes = result.boxes.xyxy.cpu().numpy()
20
+ confidences = result.boxes.conf.cpu().numpy()
21
+ class_ids = result.boxes.cls.cpu().numpy().astype(int)
22
+
23
+ for box, confidence, class_id in zip(boxes, confidences, class_ids):
24
+ x_min, y_min, x_max, y_max = map(int, box)
25
+ class_name = model.names[class_id]
26
+
27
+ # Pick a color or use a fixed color, no need for random if not desired
28
+ color = (0, 255, 0)
29
+ cv2.rectangle(annotated_image, (x_min, y_min), (x_max, y_max), color, 2)
30
+ label = f"{class_name} {confidence:.2f}"
31
+ cv2.putText(annotated_image, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
32
+
33
+ detections.append({
34
+ "label": class_name,
35
+ "confidence": float(confidence),
36
+ "bounding_box": {
37
+ "x1": x_min,
38
+ "y1": y_min,
39
+ "x2": x_max,
40
+ "y2": y_max
41
+ }
42
+ })
43
+
44
+ return annotated_image, detections
45
+
46
+ def gradio_interface(image):
47
+ annotated_image, detections = detect_and_visualize(image)
48
+ return annotated_image, detections
49
+
50
+ interface = gr.Interface(
51
+ fn=gradio_interface,
52
+ inputs=gr.Image(type="numpy", label="Upload Image"),
53
+ outputs=[
54
+ gr.Image(type="numpy", label="Annotated Image"),
55
+ gr.JSON(label="Detection Details")
56
+ ],
57
+ title="YOLO Object Detection",
58
+ description="Upload an image to detect objects and view annotated results along with detailed detection data."
59
+ )
60
+
61
+ if __name__ == "__main__":
62
+ interface.launch()
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0020456ffaedfacdeafd3caf1d89b96a58844110c4caaa425f9e0a3152ef8b2
3
+ size 118666514