File size: 18,300 Bytes
3bb297d 87b47b8 3bb297d 87b47b8 8aeaf79 3bb297d f4faaff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# -*- coding: utf-8 -*-
"""tp3__1_-1.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1_Sjx5G1BW689ggZJAJ4P7kCZndOobNCp
"""
# Install Gradio
!pip install gradio -q
# Install timidy
!sudo apt-get install -q -y timidity libsndfile1
# All the imports to deal with sound data
!pip install pydub numba==0.48 librosa music21
# Import Libraries
import gradio as gr
import time
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import matplotlib.pyplot as plt
import librosa
from librosa import display as librosadisplay
import logging
import math
import statistics
import sys
from IPython.display import Audio, Javascript
from scipy.io import wavfile
from base64 import b64decode
import music21
from pydub import AudioSegment
logger = logging.getLogger()
logger.setLevel(logging.ERROR)
#print("tensorflow: %s" % tf.__version__)
#print("librosa: %s" % librosa.__version__)
# The audio input file
# Now the hardest part: Record your singing! :)
# We provide four methods to obtain an audio file:
# 1. Record audio directly in Gradio
# 2. Use a file saved on Google Drive
# Use a file saved on Google Drive
INPUT_SOURCE = 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav'
!wget --no-check-certificate 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav' -O c-scale.wav
uploaded_file_name = 'c-scale.wav'
uploaded_file_name
# Function that converts the user-created audio to the format that the model
# expects: bitrate 16kHz and only one channel (mono).
EXPECTED_SAMPLE_RATE = 16000
def convert_audio_for_model(user_file, output_file='converted_audio_file.wav'):
audio = AudioSegment.from_file(user_file)
audio = audio.set_frame_rate(EXPECTED_SAMPLE_RATE).set_channels(1)
audio.export(output_file, format="wav")
return output_file
MAX_ABS_INT16 = 32768.0
def plot_stft(x, sample_rate, show_black_and_white=False):
x_stft = np.abs(librosa.stft(x, n_fft=2048))
fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
x_stft_db = librosa.amplitude_to_db(x_stft, ref=np.max)
if(show_black_and_white):
librosadisplay.specshow(data=x_stft_db,
y_axis='log',
sr=sample_rate,
cmap='gray_r')
else:
librosadisplay.specshow(data=x_stft_db,
y_axis='log',
sr=sample_rate)
plt.colorbar(format='%+2.0f dB')
return fig
# Loading audio samples from the wav file:
sample_rate, audio_samples = wavfile.read(converted_audio_file, 'rb')
fig = plot_stft(audio_samples / MAX_ABS_INT16 , sample_rate=EXPECTED_SAMPLE_RATE)
# Executing the Model
# Loading the SPICE model is easy:
model = hub.load("https://tfhub.dev/google/spice/2")
def plot_pitch_conf(pitch_outputs,confidence_outputs):
fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
plt.plot(pitch_outputs, label='pitch')
plt.plot(confidence_outputs, label='confidence')
plt.legend(loc="lower right")
return fig
def plot_pitch_conf_notes(confident_pitch_outputs_x,confident_pitch_outputs_y):
fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
ax.set_ylim([0, 1])
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, )
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, c="r")
return fig
def output2hz(pitch_output):
# Constants taken from https://tfhub.dev/google/spice/2
PT_OFFSET = 25.58
PT_SLOPE = 63.07
FMIN = 10.0;
BINS_PER_OCTAVE = 12.0;
cqt_bin = pitch_output * PT_SLOPE + PT_OFFSET;
return FMIN * 2.0 ** (1.0 * cqt_bin / BINS_PER_OCTAVE)
def espectro_notas(audio_samples,EXPECTED_SAMPLE_RATE,confident_pitch_outputs_x,confident_pitch_values_hz):
fig, ax = plt.subplots()
plot_stft(audio_samples / MAX_ABS_INT16 ,
sample_rate=EXPECTED_SAMPLE_RATE, show_black_and_white=True)
# Note: conveniently, since the plot is in log scale, the pitch outputs
# also get converted to the log scale automatically by matplotlib.
plt.scatter(confident_pitch_outputs_x, confident_pitch_values_hz, c="r")
return fig
def hz2offset(freq):
# This measures the quantization error for a single note.
if freq == 0: # Rests always have zero error.
return None
# Quantized note.
h = round(12 * math.log2(freq / C0))
return 12 * math.log2(freq / C0) - h
def quantize_predictions(group, ideal_offset):
# Group values are either 0, or a pitch in Hz.
non_zero_values = [v for v in group if v != 0]
zero_values_count = len(group) - len(non_zero_values)
# Create a rest if 80% is silent, otherwise create a note.
if zero_values_count > 0.8 * len(group):
# Interpret as a rest. Count each dropped note as an error, weighted a bit
# worse than a badly sung note (which would 'cost' 0.5).
return 0.51 * len(non_zero_values), "Rest"
else:
# Interpret as note, estimating as mean of non-rest predictions.
h = round(
statistics.mean([
12 * math.log2(freq / C0) - ideal_offset for freq in non_zero_values
]))
octave = h // 12
n = h % 12
note = note_names[n] + str(octave)
# Quantization error is the total difference from the quantized note.
error = sum([
abs(12 * math.log2(freq / C0) - ideal_offset - h)
for freq in non_zero_values
])
return error, note
def get_quantization_and_error(pitch_outputs_and_rests, predictions_per_eighth,
prediction_start_offset, ideal_offset):
# Apply the start offset - we can just add the offset as rests.
pitch_outputs_and_rests = [0] * prediction_start_offset + \
pitch_outputs_and_rests
# Collect the predictions for each note (or rest).
groups = [
pitch_outputs_and_rests[i:i + predictions_per_eighth]
for i in range(0, len(pitch_outputs_and_rests), predictions_per_eighth)
]
quantization_error = 0
notes_and_rests = []
for group in groups:
error, note_or_rest = quantize_predictions(group, ideal_offset)
quantization_error += error
notes_and_rests.append(note_or_rest)
return quantization_error, notes_and_rests
def main(audio):
# Preparing the audio data
# Now we have the audio, let's convert it to the expected format and then
# listen to it!
# The SPICE model needs as input an audio file at a sampling rate of 16kHz and
# with only one channel (mono).
# To help you with this part, we created a function(`convert_audio_for_model`)
#to convert any wav file you have to the model's expected format:
# Converting to the expected format for the model
# in all the input 4 input method before, the uploaded file name is at
# the variable uploaded_file_name
converted_audio_file = convert_audio_for_model(audio)
# Loading audio samples from the wav file:
sample_rate, audio_samples = wavfile.read(converted_audio_file, 'rb')
audio_samples = audio_samples / float(MAX_ABS_INT16)
# We now feed the audio to the SPICE tf.hub model to obtain pitch and uncertainty outputs as tensors.
model_output = model.signatures["serving_default"](tf.constant(audio_samples, tf.float32))
pitch_outputs = model_output["pitch"]
uncertainty_outputs = model_output["uncertainty"]
# 'Uncertainty' basically means the inverse of confidence.
confidence_outputs = 1.0 - uncertainty_outputs
confidence_outputs = list(confidence_outputs)
pitch_outputs = [ float(x) for x in pitch_outputs]
indices = range(len (pitch_outputs))
confident_pitch_outputs = [ (i,p)
for i, p, c in zip(indices, pitch_outputs, confidence_outputs) if c >= 0.9 ]
confident_pitch_outputs_x, confident_pitch_outputs_y = zip(*confident_pitch_outputs)
confident_pitch_values_hz = [ output2hz(p) for p in confident_pitch_outputs_y ]
#Plot waves
fig1 = plt.figure()
plt.plot(audio_samples)
#Plot
fig2 = plot_stft(audio_samples / MAX_ABS_INT16 , sample_rate=EXPECTED_SAMPLE_RATE)
#Plot Pitch & Confidence
fig3 = plot_pitch_conf(pitch_outputs,confidence_outputs)
#Plot Pitch & Confidence Notes
fig4 = plot_pitch_conf_notes(confident_pitch_outputs_x,confident_pitch_outputs_y)
#Plot Espectro + Notes
fig5 = espectro_notas(audio_samples,EXPECTED_SAMPLE_RATE,confident_pitch_outputs_x,confident_pitch_values_hz)
# ############################################################################
# Converting to musical notes ################################################
# Now that we have the pitch values, let's convert them to notes!
# This is part is challenging by itself. We have to take into account two
# things:
# 1. the rests (when there's no singing)
# 2. the size of each note (offsets)
# ----------------------------------------------------------------------------
### 1: Adding zeros to the output to indicate when there's no singing
pitch_outputs_and_rests = [
output2hz(p) if c >= 0.9 else 0
for i, p, c in zip(indices, pitch_outputs, confidence_outputs)
]
# ----------------------------------------------------------------------------
### 2: Adding note offsets
# When a person sings freely, the melody may have an offset to the absolute
# pitch values that notes can represent.
# Hence, to convert predictions to notes, one needs to correct for this
# possible offset.
# This is what the following code computes.
A4 = 440
C0 = A4 * pow(2, -4.75)
note_names = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
def hz2offset(freq):
# This measures the quantization error for a single note.
if freq == 0: # Rests always have zero error.
return None
# Quantized note.
h = round(12 * math.log2(freq / C0))
return 12 * math.log2(freq / C0) - h
# The ideal offset is the mean quantization error for all the notes
# (excluding rests):
offsets = [hz2offset(p) for p in pitch_outputs_and_rests if p != 0]
#print("offsets: ", offsets)
off = offsets
ideal_offset = statistics.mean(offsets)
#print("ideal offset: ", ideal_offset)
ideal_off = ideal_offset
# We can now use some heuristics to try and estimate the most likely sequence
# of notes that were sung.
# The ideal offset computed above is one ingredient - but we also need to know
# the speed (how many predictions make, say, an eighth?), and the time offset
# to start quantizing. To keep it simple, we'll just try different speeds and
# time offsets and measure the quantization error, using in the end the values
# that minimize this error.
def quantize_predictions(group, ideal_offset):
# Group values are either 0, or a pitch in Hz.
non_zero_values = [v for v in group if v != 0]
zero_values_count = len(group) - len(non_zero_values)
# Create a rest if 80% is silent, otherwise create a note.
if zero_values_count > 0.8 * len(group):
# Interpret as a rest. Count each dropped note as an error, weighted a bit
# worse than a badly sung note (which would 'cost' 0.5).
return 0.51 * len(non_zero_values), "Rest"
else:
# Interpret as note, estimating as mean of non-rest predictions.
h = round(
statistics.mean([
12 * math.log2(freq / C0) - ideal_offset for freq in non_zero_values
]))
octave = h // 12
n = h % 12
note = note_names[n] + str(octave)
# Quantization error is the total difference from the quantized note.
error = sum([
abs(12 * math.log2(freq / C0) - ideal_offset - h)
for freq in non_zero_values
])
return error, note
def get_quantization_and_error(pitch_outputs_and_rests, predictions_per_eighth,
prediction_start_offset, ideal_offset):
# Apply the start offset - we can just add the offset as rests.
pitch_outputs_and_rests = [0] * prediction_start_offset + \
pitch_outputs_and_rests
# Collect the predictions for each note (or rest).
groups = [
pitch_outputs_and_rests[i:i + predictions_per_eighth]
for i in range(0, len(pitch_outputs_and_rests), predictions_per_eighth)
]
quantization_error = 0
notes_and_rests = []
for group in groups:
error, note_or_rest = quantize_predictions(group, ideal_offset)
quantization_error += error
notes_and_rests.append(note_or_rest)
return quantization_error, notes_and_rests
best_error = float("inf")
best_notes_and_rests = None
best_predictions_per_note = None
for predictions_per_note in range(20, 65, 1):
for prediction_start_offset in range(predictions_per_note):
error, notes_and_rests = get_quantization_and_error(
pitch_outputs_and_rests, predictions_per_note,
prediction_start_offset, ideal_offset)
if error < best_error:
best_error = error
best_notes_and_rests = notes_and_rests
best_predictions_per_note = predictions_per_note
# At this point, best_notes_and_rests contains the best quantization.
# Since we don't need to have rests at the beginning, let's remove these:
while best_notes_and_rests[0] == 'Rest':
best_notes_and_rests = best_notes_and_rests[1:]
# Also remove silence at the end.
while best_notes_and_rests[-1] == 'Rest':
best_notes_and_rests = best_notes_and_rests[:-1]
# ____________________________________________________________________________
# Now let's write the quantized notes as sheet music score!
# To do it we will use two libraries: [music21](http://web.mit.edu/music21/) and
# [Open Sheet Music Display](https://github.com/opensheetmusicdisplay/opensheetmusicdisplay)
# **Note:** for simplicity, we assume here that all notes have the same duration
# (a half note).
# Creating the sheet music score.
sc = music21.stream.Score()
# Adjust the speed to match the actual singing.
bpm = 60 * 60 / best_predictions_per_note
#print ('bpm: ', bpm)
a = music21.tempo.MetronomeMark(number=bpm)
sc.insert(0,a)
for snote in best_notes_and_rests:
d = 'half'
if snote == 'Rest':
sc.append(music21.note.Rest(type=d))
else:
sc.append(music21.note.Note(snote, type=d))
# @title [Run this] Helper function to use Open Sheet Music Display (JS code)
# to show a music score
from IPython.core.display import display, HTML, Javascript
import json, random
def showScore(score):
xml = open(score.write('musicxml')).read()
showMusicXML(xml)
def showMusicXML(xml):
DIV_ID = "OSMD_div"
a = display(HTML('<div id="'+DIV_ID+'">loading OpenSheetMusicDisplay</div>'))
script = """
var div_id = {{DIV_ID}};
function loadOSMD() {
return new Promise(function(resolve, reject){
if (window.opensheetmusicdisplay) {
return resolve(window.opensheetmusicdisplay)
}
// OSMD script has a 'define' call which conflicts with requirejs
var _define = window.define // save the define object
window.define = undefined // now the loaded script will ignore requirejs
var s = document.createElement( 'script' );
s.setAttribute( 'src', "https://cdn.jsdelivr.net/npm/opensheetmusicdisplay@0.7.6/build/opensheetmusicdisplay.min.js" );
//s.setAttribute( 'src', "/custom/opensheetmusicdisplay.js" );
s.onload=function(){
window.define = _define
resolve(opensheetmusicdisplay);
};
document.body.appendChild( s ); // browser will try to load the new script tag
})
}
loadOSMD().then((OSMD)=>{
window.openSheetMusicDisplay = new OSMD.OpenSheetMusicDisplay(div_id, {
drawingParameters: "compacttight"
});
openSheetMusicDisplay
.load({{data}})
.then(
function() {
openSheetMusicDisplay.render();
}
);
})
""".replace('{{DIV_ID}}',DIV_ID).replace('{{data}}',json.dumps(xml))
#display(Javascript(script))
return a
# rendering the music score
partitura = showScore(sc)
#print(best_notes_and_rests)
# ____________________________________________________________________________
# Let's convert the music notes to a MIDI file and listen to it.
# To create this file, we can use the stream we created before.
# Saving the recognized musical notes as a MIDI file
converted_audio_file_as_midi = converted_audio_file[:-4] + '.mid'
fp = sc.write('midi', fp=converted_audio_file_as_midi)
wav_from_created_midi = converted_audio_file_as_midi.replace(' ', '_') + "_midioutput.wav"
#print(wav_from_created_midi)
# To listen to it on colab, we need to convert it back to wav. An easy way of
# doing that is using Timidity.
!timidity $converted_audio_file_as_midi -Ow -o $wav_from_created_midi
return converted_audio_file, fig1, fig2, fig3, fig4,fig5, bpm, best_notes_and_rests, partitura, wav_from_created_midi
link = "https://www.tensorflow.org/hub/tutorials/spice?hl=es-419&authuser=2"
iface = gr.Interface(
fn=main,
title= "Trabajo Práctico N°3 - Detección de tono con SPICE",
description="Implementación de Modelo con GitHub + Hugging Face🤗-- 🔊✅ " + "Basado en: " + link,
inputs = [gr.inputs.Audio(source= "microphone" , type="filepath",label="Ingrese Audio")],
outputs= [gr.outputs.Audio(label="Audio Original"),
gr.outputs.Plot(type="auto",label="Gráfico de Frecuencias"),
gr.outputs.Plot(type="auto",label="Especto"),
gr.outputs.Plot(type="auto",label="Pitch Confidence"),
gr.outputs.Plot(type="auto",label="Notas"),
gr.outputs.Plot(type="auto",label="Espectro+Notas"),
gr.outputs.Textbox(label="bpm"),
gr.outputs.Textbox(label="partitura"),
gr.outputs.Textbox(type="html",label="partitura1"),
gr.outputs.Audio(label="midi")],
examples=[[uploaded_file_name]],
interpretation = "default",
)
iface.launch(debug=True)
|