Miguel Jaramillo commited on
Commit
0f75bc4
1 Parent(s): 453afdd

Add files via upload

Browse files
Files changed (1) hide show
  1. app.py +537 -0
app.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Pitch Detection with SPICE
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/spice.ipynb
8
+
9
+ ##### Copyright 2020 The TensorFlow Hub Authors.
10
+
11
+ Licensed under the Apache License, Version 2.0 (the "License");
12
+ """
13
+
14
+ #@title Copyright 2020 The TensorFlow Hub Authors. All Rights Reserved.
15
+ #
16
+ # Licensed under the Apache License, Version 2.0 (the "License");
17
+ # you may not use this file except in compliance with the License.
18
+ # You may obtain a copy of the License at
19
+ #
20
+ # http://www.apache.org/licenses/LICENSE-2.0
21
+ #
22
+ # Unless required by applicable law or agreed to in writing, software
23
+ # distributed under the License is distributed on an "AS IS" BASIS,
24
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
+ # See the License for the specific language governing permissions and
26
+ # limitations under the License.
27
+ # ==============================================================================
28
+
29
+ """<table class="tfo-notebook-buttons" align="left">
30
+ <td>
31
+ <a target="_blank" href="https://www.tensorflow.org/hub/tutorials/spice"><img src="https://www.tensorflow.org/images/tf_logo_32px.png" />View on TensorFlow.org</a>
32
+ </td>
33
+ <td>
34
+ <a target="_blank" href="https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/spice.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a>
35
+ </td>
36
+ <td>
37
+ <a target="_blank" href="https://github.com/tensorflow/hub/blob/master/examples/colab/spice.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View on GitHub</a>
38
+ </td>
39
+ <td>
40
+ <a href="https://storage.googleapis.com/tensorflow_docs/hub/examples/colab/spice.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Download notebook</a>
41
+ </td>
42
+ <td>
43
+ <a href="https://tfhub.dev/google/spice/2"><img src="https://www.tensorflow.org/images/hub_logo_32px.png" />See TF Hub model</a>
44
+ </td>
45
+ </table>
46
+
47
+ # Pitch Detection with SPICE
48
+
49
+ This colab will show you how to use the SPICE model downloaded from TensorFlow Hub.
50
+ """
51
+
52
+ !sudo apt-get install -q -y timidity libsndfile1
53
+
54
+ # All the imports to deal with sound data
55
+ !pip install pydub numba==0.48 librosa music21
56
+
57
+ import tensorflow as tf
58
+ import tensorflow_hub as hub
59
+
60
+ import numpy as np
61
+ import matplotlib.pyplot as plt
62
+ import librosa
63
+ from librosa import display as librosadisplay
64
+
65
+ import logging
66
+ import math
67
+ import statistics
68
+ import sys
69
+
70
+ from IPython.display import Audio, Javascript
71
+ from scipy.io import wavfile
72
+
73
+ from base64 import b64decode
74
+
75
+ import music21
76
+ from pydub import AudioSegment
77
+
78
+ logger = logging.getLogger()
79
+ logger.setLevel(logging.ERROR)
80
+
81
+ print("tensorflow: %s" % tf.__version__)
82
+ #print("librosa: %s" % librosa.__version__)
83
+
84
+ """# The audio input file
85
+ Now the hardest part: Record your singing! :)
86
+
87
+ We provide four methods to obtain an audio file:
88
+
89
+ 1. Record audio directly in colab
90
+ 2. Upload from your computer
91
+ 3. Use a file saved on Google Drive
92
+ 4. Download the file from the web
93
+
94
+ Choose one of the four methods below.
95
+ """
96
+
97
+ #@title [Run this] Definition of the JS code to record audio straight from the browser
98
+
99
+ RECORD = """
100
+ const sleep = time => new Promise(resolve => setTimeout(resolve, time))
101
+ const b2text = blob => new Promise(resolve => {
102
+ const reader = new FileReader()
103
+ reader.onloadend = e => resolve(e.srcElement.result)
104
+ reader.readAsDataURL(blob)
105
+ })
106
+ var record = time => new Promise(async resolve => {
107
+ stream = await navigator.mediaDevices.getUserMedia({ audio: true })
108
+ recorder = new MediaRecorder(stream)
109
+ chunks = []
110
+ recorder.ondataavailable = e => chunks.push(e.data)
111
+ recorder.start()
112
+ await sleep(time)
113
+ recorder.onstop = async ()=>{
114
+ blob = new Blob(chunks)
115
+ text = await b2text(blob)
116
+ resolve(text)
117
+ }
118
+ recorder.stop()
119
+ })
120
+ """
121
+
122
+ def record(sec=5):
123
+ try:
124
+ from google.colab import output
125
+ except ImportError:
126
+ print('No possible to import output from google.colab')
127
+ return ''
128
+ else:
129
+ print('Recording')
130
+ display(Javascript(RECORD))
131
+ s = output.eval_js('record(%d)' % (sec*1000))
132
+ fname = 'recorded_audio.wav'
133
+ print('Saving to', fname)
134
+ b = b64decode(s.split(',')[1])
135
+ with open(fname, 'wb') as f:
136
+ f.write(b)
137
+ return fname
138
+
139
+ #@title Select how to input your audio { run: "auto" }
140
+ INPUT_SOURCE = 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav' #@param ["https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav", "RECORD", "UPLOAD", "./drive/My Drive/YOUR_MUSIC_FILE.wav"] {allow-input: true}
141
+
142
+ print('You selected', INPUT_SOURCE)
143
+
144
+ if INPUT_SOURCE == 'RECORD':
145
+ uploaded_file_name = record(5)
146
+ elif INPUT_SOURCE == 'UPLOAD':
147
+ try:
148
+ from google.colab import files
149
+ except ImportError:
150
+ print("ImportError: files from google.colab seems to not be available")
151
+ else:
152
+ uploaded = files.upload()
153
+ for fn in uploaded.keys():
154
+ print('User uploaded file "{name}" with length {length} bytes'.format(
155
+ name=fn, length=len(uploaded[fn])))
156
+ uploaded_file_name = next(iter(uploaded))
157
+ print('Uploaded file: ' + uploaded_file_name)
158
+ elif INPUT_SOURCE.startswith('./drive/'):
159
+ try:
160
+ from google.colab import drive
161
+ except ImportError:
162
+ print("ImportError: files from google.colab seems to not be available")
163
+ else:
164
+ drive.mount('/content/drive')
165
+ # don't forget to change the name of the file you
166
+ # will you here!
167
+ gdrive_audio_file = 'YOUR_MUSIC_FILE.wav'
168
+ uploaded_file_name = INPUT_SOURCE
169
+ elif INPUT_SOURCE.startswith('http'):
170
+ !wget --no-check-certificate 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav' -O c-scale.wav
171
+ uploaded_file_name = 'c-scale.wav'
172
+ else:
173
+ print('Unrecognized input format!')
174
+ print('Please select "RECORD", "UPLOAD", or specify a file hosted on Google Drive or a file from the web to download file to download')
175
+
176
+ """# Preparing the audio data
177
+
178
+ Now we have the audio, let's convert it to the expected format and then listen to it!
179
+
180
+ The SPICE model needs as input an audio file at a sampling rate of 16kHz and with only one channel (mono).
181
+
182
+ To help you with this part, we created a function (`convert_audio_for_model`) to convert any wav file you have to the model's expected format:
183
+ """
184
+
185
+ # Function that converts the user-created audio to the format that the model
186
+ # expects: bitrate 16kHz and only one channel (mono).
187
+
188
+ EXPECTED_SAMPLE_RATE = 16000
189
+
190
+ def convert_audio_for_model(user_file, output_file='converted_audio_file.wav'):
191
+ audio = AudioSegment.from_file(user_file)
192
+ audio = audio.set_frame_rate(EXPECTED_SAMPLE_RATE).set_channels(1)
193
+ audio.export(output_file, format="wav")
194
+ return output_file
195
+
196
+ # Converting to the expected format for the model
197
+ # in all the input 4 input method before, the uploaded file name is at
198
+ # the variable uploaded_file_name
199
+ converted_audio_file = convert_audio_for_model(uploaded_file_name)
200
+
201
+ # Loading audio samples from the wav file:
202
+ sample_rate, audio_samples = wavfile.read(converted_audio_file, 'rb')
203
+
204
+ # Show some basic information about the audio.
205
+ duration = len(audio_samples)/sample_rate
206
+ print(f'Sample rate: {sample_rate} Hz')
207
+ print(f'Total duration: {duration:.2f}s')
208
+ print(f'Size of the input: {len(audio_samples)}')
209
+
210
+ # Let's listen to the wav file.
211
+ Audio(audio_samples, rate=sample_rate)
212
+
213
+ """First thing, let's take a look at the waveform of our singing."""
214
+
215
+ # We can visualize the audio as a waveform.
216
+ _ = plt.plot(audio_samples)
217
+
218
+ """A more informative visualization is the [spectrogram](https://en.wikipedia.org/wiki/Spectrogram), which shows frequencies present over time.
219
+
220
+ Here, we use a logarithmic frequency scale, to make the singing more clearly visible.
221
+
222
+ """
223
+
224
+ MAX_ABS_INT16 = 32768.0
225
+
226
+ def plot_stft(x, sample_rate, show_black_and_white=False):
227
+ x_stft = np.abs(librosa.stft(x, n_fft=2048))
228
+ fig, ax = plt.subplots()
229
+ fig.set_size_inches(20, 10)
230
+ x_stft_db = librosa.amplitude_to_db(x_stft, ref=np.max)
231
+ if(show_black_and_white):
232
+ librosadisplay.specshow(data=x_stft_db, y_axis='log',
233
+ sr=sample_rate, cmap='gray_r')
234
+ else:
235
+ librosadisplay.specshow(data=x_stft_db, y_axis='log', sr=sample_rate)
236
+
237
+ plt.colorbar(format='%+2.0f dB')
238
+
239
+ plot_stft(audio_samples / MAX_ABS_INT16 , sample_rate=EXPECTED_SAMPLE_RATE)
240
+ plt.show()
241
+
242
+ """We need one last conversion here. The audio samples are in int16 format. They need to be normalized to floats between -1 and 1."""
243
+
244
+ audio_samples = audio_samples / float(MAX_ABS_INT16)
245
+
246
+ """# Executing the Model
247
+ Now is the easy part, let's load the model with **TensorFlow Hub**, and feed the audio to it.
248
+ SPICE will give us two outputs: pitch and uncertainty
249
+
250
+ **TensorFlow Hub** is a library for the publication, discovery, and consumption of reusable parts of machine learning models. It makes easy to use machine learning to solve your challenges.
251
+
252
+ To load the model you just need the Hub module and the URL pointing to the model:
253
+ """
254
+
255
+ # Loading the SPICE model is easy:
256
+ model = hub.load("https://tfhub.dev/google/spice/2")
257
+
258
+ """**Note:** An interesting detail here is that all the model urls from Hub can be used for download and also to read the documentation, so if you point your browser to that link you can read documentation on how to use the model and learn more about how it was trained.
259
+
260
+ With the model loaded, data prepared, we need 3 lines to get the result:
261
+ """
262
+
263
+ # We now feed the audio to the SPICE tf.hub model to obtain pitch and uncertainty outputs as tensors.
264
+ model_output = model.signatures["serving_default"](tf.constant(audio_samples, tf.float32))
265
+
266
+ pitch_outputs = model_output["pitch"]
267
+ uncertainty_outputs = model_output["uncertainty"]
268
+
269
+ # 'Uncertainty' basically means the inverse of confidence.
270
+ confidence_outputs = 1.0 - uncertainty_outputs
271
+
272
+ fig, ax = plt.subplots()
273
+ fig.set_size_inches(20, 10)
274
+ plt.plot(pitch_outputs, label='pitch')
275
+ plt.plot(confidence_outputs, label='confidence')
276
+ plt.legend(loc="lower right")
277
+ plt.show()
278
+
279
+ """Let's make the results easier to understand by removing all pitch estimates with low confidence (confidence < 0.9) and plot the remaining ones.
280
+
281
+
282
+ """
283
+
284
+ confidence_outputs = list(confidence_outputs)
285
+ pitch_outputs = [ float(x) for x in pitch_outputs]
286
+
287
+ indices = range(len (pitch_outputs))
288
+ confident_pitch_outputs = [ (i,p)
289
+ for i, p, c in zip(indices, pitch_outputs, confidence_outputs) if c >= 0.9 ]
290
+ confident_pitch_outputs_x, confident_pitch_outputs_y = zip(*confident_pitch_outputs)
291
+
292
+ fig, ax = plt.subplots()
293
+ fig.set_size_inches(20, 10)
294
+ ax.set_ylim([0, 1])
295
+ plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, )
296
+ plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, c="r")
297
+
298
+ plt.show()
299
+
300
+ """The pitch values returned by SPICE are in the range from 0 to 1. Let's convert them to absolute pitch values in Hz."""
301
+
302
+ def output2hz(pitch_output):
303
+ # Constants taken from https://tfhub.dev/google/spice/2
304
+ PT_OFFSET = 25.58
305
+ PT_SLOPE = 63.07
306
+ FMIN = 10.0;
307
+ BINS_PER_OCTAVE = 12.0;
308
+ cqt_bin = pitch_output * PT_SLOPE + PT_OFFSET;
309
+ return FMIN * 2.0 ** (1.0 * cqt_bin / BINS_PER_OCTAVE)
310
+
311
+ confident_pitch_values_hz = [ output2hz(p) for p in confident_pitch_outputs_y ]
312
+
313
+ """Now, let's see how good the prediction is: We will overlay the predicted pitches over the original spectrogram. To make the pitch predictions more visible, we changed the spectrogram to black and white."""
314
+
315
+ plot_stft(audio_samples / MAX_ABS_INT16 ,
316
+ sample_rate=EXPECTED_SAMPLE_RATE, show_black_and_white=True)
317
+ # Note: conveniently, since the plot is in log scale, the pitch outputs
318
+ # also get converted to the log scale automatically by matplotlib.
319
+ plt.scatter(confident_pitch_outputs_x, confident_pitch_values_hz, c="r")
320
+
321
+ plt.show()
322
+
323
+ """# Converting to musical notes
324
+
325
+ Now that we have the pitch values, let's convert them to notes!
326
+ This is part is challenging by itself. We have to take into account two things:
327
+ 1. the rests (when there's no singing)
328
+ 2. the size of each note (offsets)
329
+
330
+ ### 1: Adding zeros to the output to indicate when there's no singing
331
+ """
332
+
333
+ pitch_outputs_and_rests = [
334
+ output2hz(p) if c >= 0.9 else 0
335
+ for i, p, c in zip(indices, pitch_outputs, confidence_outputs)
336
+ ]
337
+
338
+ """### 2: Adding note offsets
339
+
340
+ When a person sings freely, the melody may have an offset to the absolute pitch values that notes can represent.
341
+ Hence, to convert predictions to notes, one needs to correct for this possible offset.
342
+ This is what the following code computes.
343
+ """
344
+
345
+ A4 = 440
346
+ C0 = A4 * pow(2, -4.75)
347
+ note_names = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
348
+
349
+ def hz2offset(freq):
350
+ # This measures the quantization error for a single note.
351
+ if freq == 0: # Rests always have zero error.
352
+ return None
353
+ # Quantized note.
354
+ h = round(12 * math.log2(freq / C0))
355
+ return 12 * math.log2(freq / C0) - h
356
+
357
+
358
+ # The ideal offset is the mean quantization error for all the notes
359
+ # (excluding rests):
360
+ offsets = [hz2offset(p) for p in pitch_outputs_and_rests if p != 0]
361
+ print("offsets: ", offsets)
362
+
363
+ ideal_offset = statistics.mean(offsets)
364
+ print("ideal offset: ", ideal_offset)
365
+
366
+ """We can now use some heuristics to try and estimate the most likely sequence of notes that were sung.
367
+ The ideal offset computed above is one ingredient - but we also need to know the speed (how many predictions make, say, an eighth?), and the time offset to start quantizing. To keep it simple, we'll just try different speeds and time offsets and measure the quantization error, using in the end the values that minimize this error.
368
+ """
369
+
370
+ def quantize_predictions(group, ideal_offset):
371
+ # Group values are either 0, or a pitch in Hz.
372
+ non_zero_values = [v for v in group if v != 0]
373
+ zero_values_count = len(group) - len(non_zero_values)
374
+
375
+ # Create a rest if 80% is silent, otherwise create a note.
376
+ if zero_values_count > 0.8 * len(group):
377
+ # Interpret as a rest. Count each dropped note as an error, weighted a bit
378
+ # worse than a badly sung note (which would 'cost' 0.5).
379
+ return 0.51 * len(non_zero_values), "Rest"
380
+ else:
381
+ # Interpret as note, estimating as mean of non-rest predictions.
382
+ h = round(
383
+ statistics.mean([
384
+ 12 * math.log2(freq / C0) - ideal_offset for freq in non_zero_values
385
+ ]))
386
+ octave = h // 12
387
+ n = h % 12
388
+ note = note_names[n] + str(octave)
389
+ # Quantization error is the total difference from the quantized note.
390
+ error = sum([
391
+ abs(12 * math.log2(freq / C0) - ideal_offset - h)
392
+ for freq in non_zero_values
393
+ ])
394
+ return error, note
395
+
396
+
397
+ def get_quantization_and_error(pitch_outputs_and_rests, predictions_per_eighth,
398
+ prediction_start_offset, ideal_offset):
399
+ # Apply the start offset - we can just add the offset as rests.
400
+ pitch_outputs_and_rests = [0] * prediction_start_offset + \
401
+ pitch_outputs_and_rests
402
+ # Collect the predictions for each note (or rest).
403
+ groups = [
404
+ pitch_outputs_and_rests[i:i + predictions_per_eighth]
405
+ for i in range(0, len(pitch_outputs_and_rests), predictions_per_eighth)
406
+ ]
407
+
408
+ quantization_error = 0
409
+
410
+ notes_and_rests = []
411
+ for group in groups:
412
+ error, note_or_rest = quantize_predictions(group, ideal_offset)
413
+ quantization_error += error
414
+ notes_and_rests.append(note_or_rest)
415
+
416
+ return quantization_error, notes_and_rests
417
+
418
+
419
+ best_error = float("inf")
420
+ best_notes_and_rests = None
421
+ best_predictions_per_note = None
422
+
423
+ for predictions_per_note in range(20, 65, 1):
424
+ for prediction_start_offset in range(predictions_per_note):
425
+
426
+ error, notes_and_rests = get_quantization_and_error(
427
+ pitch_outputs_and_rests, predictions_per_note,
428
+ prediction_start_offset, ideal_offset)
429
+
430
+ if error < best_error:
431
+ best_error = error
432
+ best_notes_and_rests = notes_and_rests
433
+ best_predictions_per_note = predictions_per_note
434
+
435
+ # At this point, best_notes_and_rests contains the best quantization.
436
+ # Since we don't need to have rests at the beginning, let's remove these:
437
+ while best_notes_and_rests[0] == 'Rest':
438
+ best_notes_and_rests = best_notes_and_rests[1:]
439
+ # Also remove silence at the end.
440
+ while best_notes_and_rests[-1] == 'Rest':
441
+ best_notes_and_rests = best_notes_and_rests[:-1]
442
+
443
+ """Now let's write the quantized notes as sheet music score!
444
+
445
+ To do it we will use two libraries: [music21](http://web.mit.edu/music21/) and [Open Sheet Music Display](https://github.com/opensheetmusicdisplay/opensheetmusicdisplay)
446
+
447
+ **Note:** for simplicity, we assume here that all notes have the same duration (a half note).
448
+ """
449
+
450
+ # Creating the sheet music score.
451
+ sc = music21.stream.Score()
452
+ # Adjust the speed to match the actual singing.
453
+ bpm = 60 * 60 / best_predictions_per_note
454
+ print ('bpm: ', bpm)
455
+ a = music21.tempo.MetronomeMark(number=bpm)
456
+ sc.insert(0,a)
457
+
458
+ for snote in best_notes_and_rests:
459
+ d = 'half'
460
+ if snote == 'Rest':
461
+ sc.append(music21.note.Rest(type=d))
462
+ else:
463
+ sc.append(music21.note.Note(snote, type=d))
464
+
465
+ #@title [Run this] Helper function to use Open Sheet Music Display (JS code) to show a music score
466
+
467
+ from IPython.core.display import display, HTML, Javascript
468
+ import json, random
469
+
470
+ def showScore(score):
471
+ xml = open(score.write('musicxml')).read()
472
+ showMusicXML(xml)
473
+
474
+ def showMusicXML(xml):
475
+ DIV_ID = "OSMD_div"
476
+ display(HTML('<div id="'+DIV_ID+'">loading OpenSheetMusicDisplay</div>'))
477
+ script = """
478
+ var div_id = {{DIV_ID}};
479
+ function loadOSMD() {
480
+ return new Promise(function(resolve, reject){
481
+ if (window.opensheetmusicdisplay) {
482
+ return resolve(window.opensheetmusicdisplay)
483
+ }
484
+ // OSMD script has a 'define' call which conflicts with requirejs
485
+ var _define = window.define // save the define object
486
+ window.define = undefined // now the loaded script will ignore requirejs
487
+ var s = document.createElement( 'script' );
488
+ s.setAttribute( 'src', "https://cdn.jsdelivr.net/npm/opensheetmusicdisplay@0.7.6/build/opensheetmusicdisplay.min.js" );
489
+ //s.setAttribute( 'src', "/custom/opensheetmusicdisplay.js" );
490
+ s.onload=function(){
491
+ window.define = _define
492
+ resolve(opensheetmusicdisplay);
493
+ };
494
+ document.body.appendChild( s ); // browser will try to load the new script tag
495
+ })
496
+ }
497
+ loadOSMD().then((OSMD)=>{
498
+ window.openSheetMusicDisplay = new OSMD.OpenSheetMusicDisplay(div_id, {
499
+ drawingParameters: "compacttight"
500
+ });
501
+ openSheetMusicDisplay
502
+ .load({{data}})
503
+ .then(
504
+ function() {
505
+ openSheetMusicDisplay.render();
506
+ }
507
+ );
508
+ })
509
+ """.replace('{{DIV_ID}}',DIV_ID).replace('{{data}}',json.dumps(xml))
510
+ display(Javascript(script))
511
+ return
512
+
513
+ # rendering the music score
514
+ showScore(sc)
515
+ print(best_notes_and_rests)
516
+
517
+ """Let's convert the music notes to a MIDI file and listen to it.
518
+
519
+ To create this file, we can use the stream we created before.
520
+ """
521
+
522
+ # Saving the recognized musical notes as a MIDI file
523
+ converted_audio_file_as_midi = converted_audio_file[:-4] + '.mid'
524
+ fp = sc.write('midi', fp=converted_audio_file_as_midi)
525
+
526
+ wav_from_created_midi = converted_audio_file_as_midi.replace(' ', '_') + "_midioutput.wav"
527
+ print(wav_from_created_midi)
528
+
529
+ """To listen to it on colab, we need to convert it back to wav. An easy way of doing that is using Timidity."""
530
+
531
+ !timidity $converted_audio_file_as_midi -Ow -o $wav_from_created_midi
532
+
533
+ """And finally, listen the audio, created from notes, created via MIDI from the predicted pitches, inferred by the model!
534
+
535
+ """
536
+
537
+ Audio(wav_from_created_midi)