FrexG's picture
Create app.py
86ff979
raw
history blame
877 Bytes
import gradio as gr
import torch
import torchaudio
import torchaudio.functional as AF
from hg_mms import Transcribe
def transcribe(audio_file, lang_id: str):
print(f"audio_file={audio_file}")
print(lang_id)
freq = 16000
# Return the transcript.
transcript = ""
# load the auido file to tensor
waveform, orig_freq = torchaudio.load(audio_file.name)
# resample audio to 16Khz
if orig_freq != freq:
waveform = AF.resample(waveform, orig_freq, freq)
return transcriber(waveform, lang_id), audio_file.name
if __name__ == "__main__":
transcriber = Transcribe()
inputs = [gr.File(), gr.Dropdown(choices=["amh", "orm", "som"])]
outputs = [
gr.Textbox(label="Transcript"),
gr.Audio(label="Audio", type="filepath"),
]
app = gr.Interface(transcribe, inputs=inputs, outputs=outputs)
app.launch()