Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,28 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
import faiss
|
3 |
import numpy as np
|
4 |
import openai
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from nltk.tokenize import sent_tokenize
|
7 |
-
import nltk
|
8 |
|
9 |
-
#
|
|
|
|
|
10 |
nltk.download('punkt')
|
11 |
-
nltk.download('
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
|
17 |
# Load the Ubuntu manual from a .txt file
|
18 |
-
|
19 |
-
|
20 |
-
full_text = file.read()
|
21 |
-
except FileNotFoundError:
|
22 |
-
raise FileNotFoundError(f"The file {manual_path} was not found.")
|
23 |
|
24 |
# Function to chunk the text into smaller pieces
|
25 |
def chunk_text(text, chunk_size=500):
|
@@ -42,99 +45,84 @@ def chunk_text(text, chunk_size=500):
|
|
42 |
# Apply chunking to the entire text
|
43 |
manual_chunks = chunk_text(full_text, chunk_size=500)
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
|
54 |
-
model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
def embed_text(text_list):
|
63 |
-
return np.array(embedding_model.encode(text_list), dtype=np.float32)
|
64 |
|
65 |
# Function to retrieve relevant chunks for a user query
|
66 |
def retrieve_chunks(query, k=5):
|
67 |
query_embedding = embed_text([query])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# Function to truncate long inputs
|
87 |
-
def truncate_input(text, max_length=16385):
|
88 |
-
tokens = tokenizer.encode(text, truncation=True, max_length=max_length, return_tensors="pt")
|
89 |
-
return tokens
|
90 |
-
|
91 |
-
# Function to perform RAG: Retrieve chunks and generate a response
|
92 |
-
def rag_response(query, k=5, max_tokens=150):
|
93 |
-
try:
|
94 |
-
relevant_chunks, distances, indices = retrieve_chunks(query, k=k)
|
95 |
-
|
96 |
-
if not relevant_chunks:
|
97 |
-
return "Sorry, I couldn't find relevant information.", distances, indices
|
98 |
-
|
99 |
-
# Combine the query with retrieved chunks
|
100 |
-
augmented_input = query + "\n\n" + "\n\n".join(relevant_chunks)
|
101 |
-
|
102 |
-
# Truncate the input if it exceeds token limits
|
103 |
-
input_tokens = tokenizer.encode(augmented_input, return_tensors="pt")
|
104 |
-
if input_tokens.shape[1] > 16385:
|
105 |
-
# Truncate to fit within the model's maximum input length
|
106 |
-
augmented_input = tokenizer.decode(input_tokens[0, :16385])
|
107 |
-
|
108 |
-
# Generate response using OpenAI API
|
109 |
-
response = openai.ChatCompletion.create(
|
110 |
-
model="gpt-3.5-turbo",
|
111 |
-
messages=[
|
112 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
113 |
-
{"role": "user", "content": augmented_input}
|
114 |
-
],
|
115 |
-
max_tokens=max_tokens,
|
116 |
-
temperature=0.7
|
117 |
-
)
|
118 |
-
generated_text = response.choices[0].message['content'].strip()
|
119 |
-
return generated_text, distances, indices
|
120 |
-
except Exception as e:
|
121 |
-
return f"An error occurred: {e}", [], []
|
122 |
-
|
123 |
-
# Gradio Interface
|
124 |
-
|
125 |
-
# Gradio Interface
|
126 |
-
def format_output(response, distances, indices):
|
127 |
-
formatted_response = f"Response: {response}\n\nDistances: {distances}\n\nIndices: {indices}"
|
128 |
-
return formatted_response
|
129 |
-
|
130 |
-
iface = gr.Interface(
|
131 |
-
fn=rag_response,
|
132 |
-
inputs="text",
|
133 |
-
outputs="text",
|
134 |
-
title="RAG Chatbot with FAISS and GPT-3.5",
|
135 |
-
description="Ask me anything!",
|
136 |
-
live=True
|
137 |
-
)
|
138 |
|
|
|
139 |
if __name__ == "__main__":
|
140 |
iface.launch()
|
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
+
import nltk
|
4 |
+
from nltk.tokenize import sent_tokenize
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import torch
|
7 |
import faiss
|
8 |
import numpy as np
|
9 |
import openai
|
|
|
|
|
|
|
10 |
|
11 |
+
# Set up OpenAI API key
|
12 |
+
openai.api_key = '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'
|
13 |
+
# Download NLTK data
|
14 |
nltk.download('punkt')
|
15 |
+
nltk.download('punkt-tab')
|
16 |
|
17 |
+
# Load the tokenizer and model
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
|
19 |
+
model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
|
20 |
+
|
21 |
+
manual_path="ubuntu_manual.txt"
|
22 |
|
23 |
# Load the Ubuntu manual from a .txt file
|
24 |
+
with open(manual_path, "r", encoding="utf-8") as file:
|
25 |
+
full_text = file.read()
|
|
|
|
|
|
|
26 |
|
27 |
# Function to chunk the text into smaller pieces
|
28 |
def chunk_text(text, chunk_size=500):
|
|
|
45 |
# Apply chunking to the entire text
|
46 |
manual_chunks = chunk_text(full_text, chunk_size=500)
|
47 |
|
48 |
+
# Function to generate embeddings for each chunk
|
49 |
+
def embed_text(texts):
|
50 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model(**inputs)
|
53 |
+
embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy() # CLS token representation
|
54 |
+
return embeddings
|
55 |
|
56 |
+
# Generate embeddings for the chunks
|
57 |
+
chunk_embeddings = embed_text(manual_chunks)
|
|
|
|
|
58 |
|
59 |
+
# Convert embeddings to a numpy array
|
60 |
+
chunk_embeddings_np = np.array(chunk_embeddings)
|
61 |
|
62 |
+
# Create a FAISS index and add the embeddings
|
63 |
+
dimension = chunk_embeddings_np.shape[1]
|
64 |
+
index = faiss.IndexFlatL2(dimension)
|
65 |
+
index.add(chunk_embeddings_np)
|
|
|
|
|
66 |
|
67 |
# Function to retrieve relevant chunks for a user query
|
68 |
def retrieve_chunks(query, k=5):
|
69 |
query_embedding = embed_text([query])
|
70 |
+
distances, indices = index.search(query_embedding, k=k)
|
71 |
+
valid_indices = [i for i in indices[0] if i < len(manual_chunks)]
|
72 |
+
relevant_chunks = [manual_chunks[i] for i in valid_indices]
|
73 |
+
return relevant_chunks
|
74 |
+
|
75 |
+
# Function to perform RAG: Retrieve chunks and generate a response using GPT-3.5
|
76 |
+
def rag_response_gpt3_5(query, k=3, max_tokens=150):
|
77 |
+
relevant_chunks = retrieve_chunks(query, k=k)
|
78 |
+
if not relevant_chunks:
|
79 |
+
return "Sorry, I couldn't find relevant information."
|
80 |
+
|
81 |
+
# Combine the query with a limited number of retrieved chunks
|
82 |
+
augmented_input = query + "\n" + "\n".join(relevant_chunks)
|
83 |
+
|
84 |
+
# Tokenize the augmented input and ensure it fits within model token limits
|
85 |
+
input_ids = tokenizer(augmented_input, return_tensors="pt").input_ids[0]
|
86 |
|
87 |
+
if len(input_ids) > 512:
|
88 |
+
input_ids = input_ids[:512]
|
89 |
+
augmented_input = tokenizer.decode(input_ids, skip_special_tokens=True)
|
90 |
+
|
91 |
+
response = openai.ChatCompletion.create(
|
92 |
+
model="gpt-3.5-turbo",
|
93 |
+
messages=[
|
94 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
95 |
+
{"role": "user", "content": augmented_input}
|
96 |
+
],
|
97 |
+
max_tokens=max_tokens,
|
98 |
+
temperature=0.7
|
99 |
+
)
|
100 |
+
|
101 |
+
return response.choices[0].message['content'].strip()
|
102 |
+
|
103 |
+
# Chat history to maintain conversation context
|
104 |
+
history = []
|
105 |
+
|
106 |
+
# Define Gradio interface function with chat history
|
107 |
+
def chatbot(query, history):
|
108 |
+
response = rag_response_gpt3_5(query)
|
109 |
+
history.append((query, response))
|
110 |
|
111 |
+
# Combine all messages into a single string
|
112 |
+
chat_history = ""
|
113 |
+
for user_input, bot_response in history:
|
114 |
+
chat_history += f"User: {user_input}\nBot: {bot_response}\n\n"
|
115 |
+
|
116 |
+
return chat_history, history
|
117 |
|
118 |
+
# Create the Gradio interface
|
119 |
+
iface = gr.Interface(fn=chatbot,
|
120 |
+
inputs=["text", "state"],
|
121 |
+
outputs=["text", "state"],
|
122 |
+
title="Ubuntu Manual Chatbot",
|
123 |
+
description="Ask me anything about the Ubuntu manual.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
# Launch the app
|
126 |
if __name__ == "__main__":
|
127 |
iface.launch()
|
128 |
+
|