Spaces:
Running
on
L4
Running
on
L4
File size: 21,513 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
from typing import Optional
import numpy as np
import torch as th
import torch.nn.functional as F
import torch.nn as nn
from sklearn.neighbors import KDTree
import logging
logger = logging.getLogger(__name__)
# NOTE: we need pytorch3d primarily for UV rasterization things
from pytorch3d.renderer.mesh.rasterize_meshes import rasterize_meshes
from pytorch3d.structures import Meshes
from typing import Union, Optional, Tuple
import trimesh
from trimesh import Trimesh
from trimesh.triangles import points_to_barycentric
try:
# pyre-fixme[21]: Could not find module `igl`.
from igl import point_mesh_squared_distance # @manual
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def closest_point(mesh, points):
"""Helper function that mimics trimesh.proximity.closest_point but uses
IGL for faster queries."""
v = mesh.vertices
vi = mesh.faces
dist, face_idxs, p = point_mesh_squared_distance(points, v, vi)
return p, dist, face_idxs
except ImportError:
from trimesh.proximity import closest_point
def closest_point_barycentrics(v, vi, points):
"""Given a 3D mesh and a set of query points, return closest point barycentrics
Args:
v: np.array (float)
[N, 3] mesh vertices
vi: np.array (int)
[N, 3] mesh triangle indices
points: np.array (float)
[M, 3] query points
Returns:
Tuple[approx, barys, interp_idxs, face_idxs]
approx: [M, 3] approximated (closest) points on the mesh
barys: [M, 3] barycentric weights that produce "approx"
interp_idxs: [M, 3] vertex indices for barycentric interpolation
face_idxs: [M] face indices for barycentric interpolation. interp_idxs = vi[face_idxs]
"""
mesh = Trimesh(vertices=v, faces=vi, process=False)
p, _, face_idxs = closest_point(mesh, points)
p = p.reshape((points.shape[0], 3))
face_idxs = face_idxs.reshape((points.shape[0],))
barys = points_to_barycentric(mesh.triangles[face_idxs], p)
b0, b1, b2 = np.split(barys, 3, axis=1)
interp_idxs = vi[face_idxs]
v0 = v[interp_idxs[:, 0]]
v1 = v[interp_idxs[:, 1]]
v2 = v[interp_idxs[:, 2]]
approx = b0 * v0 + b1 * v1 + b2 * v2
return approx, barys, interp_idxs, face_idxs
def make_uv_face_index(
vt: th.Tensor,
vti: th.Tensor,
uv_shape: Union[Tuple[int, int], int],
flip_uv: bool = True,
device: Optional[Union[str, th.device]] = None,
):
"""Compute a UV-space face index map identifying which mesh face contains each
texel. For texels with no assigned triangle, the index will be -1."""
if isinstance(uv_shape, int):
uv_shape = (uv_shape, uv_shape)
uv_max_shape_ind = uv_shape.index(max(uv_shape))
uv_min_shape_ind = uv_shape.index(min(uv_shape))
uv_ratio = uv_shape[uv_max_shape_ind] / uv_shape[uv_min_shape_ind]
if device is not None:
if isinstance(device, str):
dev = th.device(device)
else:
dev = device
assert dev.type == "cuda"
else:
dev = th.device("cuda")
vt = 1.0 - vt.clone()
if flip_uv:
vt = vt.clone()
vt[:, 1] = 1 - vt[:, 1]
vt_pix = 2.0 * vt.to(dev) - 1.0
vt_pix = th.cat([vt_pix, th.ones_like(vt_pix[:, 0:1])], dim=1)
vt_pix[:, uv_min_shape_ind] *= uv_ratio
meshes = Meshes(vt_pix[np.newaxis], vti[np.newaxis].to(dev))
with th.no_grad():
face_index, _, _, _ = rasterize_meshes(
meshes, uv_shape, faces_per_pixel=1, z_clip_value=0.0, bin_size=0
)
face_index = face_index[0, ..., 0]
return face_index
def make_uv_vert_index(
vt: th.Tensor,
vi: th.Tensor,
vti: th.Tensor,
uv_shape: Union[Tuple[int, int], int],
flip_uv: bool = True,
):
"""Compute a UV-space vertex index map identifying which mesh vertices
comprise the triangle containing each texel. For texels with no assigned
triangle, all indices will be -1.
"""
face_index_map = make_uv_face_index(vt, vti, uv_shape, flip_uv)
vert_index_map = vi[face_index_map.clamp(min=0)]
vert_index_map[face_index_map < 0] = -1
return vert_index_map.long()
def bary_coords(points: th.Tensor, triangles: th.Tensor, eps: float = 1.0e-6):
"""Computes barycentric coordinates for a set of 2D query points given
coordintes for the 3 vertices of the enclosing triangle for each point."""
x = points[:, 0] - triangles[2, :, 0]
x1 = triangles[0, :, 0] - triangles[2, :, 0]
x2 = triangles[1, :, 0] - triangles[2, :, 0]
y = points[:, 1] - triangles[2, :, 1]
y1 = triangles[0, :, 1] - triangles[2, :, 1]
y2 = triangles[1, :, 1] - triangles[2, :, 1]
denom = y2 * x1 - y1 * x2
n0 = y2 * x - x2 * y
n1 = x1 * y - y1 * x
# Small epsilon to prevent divide-by-zero error.
denom = th.where(denom >= 0, denom.clamp(min=eps), denom.clamp(max=-eps))
bary_0 = n0 / denom
bary_1 = n1 / denom
bary_2 = 1.0 - bary_0 - bary_1
return th.stack((bary_0, bary_1, bary_2))
def make_uv_barys(
vt: th.Tensor,
vti: th.Tensor,
uv_shape: Union[Tuple[int, int], int],
flip_uv: bool = True,
):
"""Compute a UV-space barycentric map where each texel contains barycentric
coordinates for that texel within its enclosing UV triangle. For texels
with no assigned triangle, all 3 barycentric coordinates will be 0.
"""
if isinstance(uv_shape, int):
uv_shape = (uv_shape, uv_shape)
if flip_uv:
# Flip here because texture coordinates in some of our topo files are
# stored in OpenGL convention with Y=0 on the bottom of the texture
# unlike numpy/torch arrays/tensors.
vt = vt.clone()
vt[:, 1] = 1 - vt[:, 1]
face_index_map = make_uv_face_index(vt, vti, uv_shape, flip_uv=False)
vti_map = vti.long()[face_index_map.clamp(min=0)]
uv_max_shape_ind = uv_shape.index(max(uv_shape))
uv_min_shape_ind = uv_shape.index(min(uv_shape))
uv_ratio = uv_shape[uv_max_shape_ind] / uv_shape[uv_min_shape_ind]
vt = vt.clone()
vt = vt * 2 - 1
vt[:, uv_min_shape_ind] *= uv_ratio
uv_tri_uvs = vt[vti_map].permute(2, 0, 1, 3)
uv_grid = th.meshgrid(
th.linspace(0.5, uv_shape[0] - 0.5, uv_shape[0]) / uv_shape[0],
th.linspace(0.5, uv_shape[1] - 0.5, uv_shape[1]) / uv_shape[1],
)
uv_grid = th.stack(uv_grid[::-1], dim=2).to(uv_tri_uvs)
uv_grid = uv_grid * 2 - 1
uv_grid[..., uv_min_shape_ind] *= uv_ratio
bary_map = bary_coords(uv_grid.view(-1, 2), uv_tri_uvs.view(3, -1, 2))
bary_map = bary_map.permute(1, 0).view(uv_shape[0], uv_shape[1], 3)
bary_map[face_index_map < 0] = 0
return face_index_map, bary_map
def index_image_impaint(
index_image: th.Tensor,
bary_image: Optional[th.Tensor] = None,
distance_threshold=100.0,
):
# getting the mask around the indexes?
if len(index_image.shape) == 3:
valid_index = (index_image != -1).any(dim=-1)
elif len(index_image.shape) == 2:
valid_index = index_image != -1
else:
raise ValueError("`index_image` should be a [H,W] or [H,W,C] image")
invalid_index = ~valid_index
device = index_image.device
valid_ij = th.stack(th.where(valid_index), dim=-1)
invalid_ij = th.stack(th.where(invalid_index), dim=-1)
lookup_valid = KDTree(valid_ij.cpu().numpy())
dists, idxs = lookup_valid.query(invalid_ij.cpu())
# TODO: try average?
idxs = th.as_tensor(idxs, device=device)[..., 0]
dists = th.as_tensor(dists, device=device)[..., 0]
dist_mask = dists < distance_threshold
invalid_border = th.zeros_like(invalid_index)
invalid_border[invalid_index] = dist_mask
invalid_src_ij = valid_ij[idxs][dist_mask]
invalid_dst_ij = invalid_ij[dist_mask]
index_image_imp = index_image.clone()
index_image_imp[invalid_dst_ij[:, 0], invalid_dst_ij[:, 1]] = index_image[
invalid_src_ij[:, 0], invalid_src_ij[:, 1]
]
if bary_image is not None:
bary_image_imp = bary_image.clone()
bary_image_imp[invalid_dst_ij[:, 0], invalid_dst_ij[:, 1]] = bary_image[
invalid_src_ij[:, 0], invalid_src_ij[:, 1]
]
return index_image_imp, bary_image_imp
return index_image_imp
class GeometryModule(nn.Module):
def __init__(
self,
v,
vi,
vt,
vti,
uv_size,
v2uv: Optional[th.Tensor] = None,
flip_uv=False,
impaint=False,
impaint_threshold=100.0,
):
super().__init__()
self.register_buffer("v", th.as_tensor(v))
self.register_buffer("vi", th.as_tensor(vi))
self.register_buffer("vt", th.as_tensor(vt))
self.register_buffer("vti", th.as_tensor(vti))
if v2uv is not None:
self.register_buffer("v2uv", th.as_tensor(v2uv, dtype=th.int64))
# TODO: should we just pass topology here?
# self.n_verts = v2uv.shape[0]
self.n_verts = vi.max() + 1
self.uv_size = uv_size
# TODO: can't we just index face_index?
index_image = make_uv_vert_index(
self.vt, self.vi, self.vti, uv_shape=uv_size, flip_uv=flip_uv
).cpu()
face_index, bary_image = make_uv_barys(
self.vt, self.vti, uv_shape=uv_size, flip_uv=flip_uv
)
if impaint:
if min(uv_size) >= 1024:
logger.info(
"impainting index image might take a while for sizes >= 1024"
)
index_image, bary_image = index_image_impaint(
index_image, bary_image, impaint_threshold
)
# TODO: we can avoid doing this 2x
face_index = index_image_impaint(
face_index, distance_threshold=impaint_threshold
)
self.register_buffer("index_image", index_image.cpu())
self.register_buffer("bary_image", bary_image.cpu())
self.register_buffer("face_index_image", face_index.cpu())
def render_index_images(self, uv_size, flip_uv=False, impaint=False):
index_image = make_uv_vert_index(
self.vt, self.vi, self.vti, uv_shape=uv_size, flip_uv=flip_uv
)
face_image, bary_image = make_uv_barys(
self.vt, self.vti, uv_shape=uv_size, flip_uv=flip_uv
)
if impaint:
index_image, bary_image = index_image_impaint(
index_image,
bary_image,
)
return index_image, face_image, bary_image
def vn(self, verts):
return vert_normals(verts, self.vi[np.newaxis].to(th.long))
def to_uv(self, values):
return values_to_uv(values, self.index_image, self.bary_image)
def from_uv(self, values_uv):
# TODO: we need to sample this
return sample_uv(values_uv, self.vt, self.v2uv.to(th.long))
def rand_sample_3d_uv(self, count, uv_img):
"""
Sample a set of 3D points on the surface of mesh, return corresponding interpolated values in UV space.
Args:
count - num of 3D points to be sampled
uv_img - the image in uv space to be sampled, e.g., texture
"""
_mesh = Trimesh(vertices=self.v.detach().cpu().numpy(), faces=self.vi.detach().cpu().numpy(), process=False)
points, _ = trimesh.sample.sample_surface(_mesh, count)
return self.sample_uv_from_3dpts(points, uv_img)
def sample_uv_from_3dpts(self, points, uv_img):
num_pts = points.shape[0]
approx, barys, interp_idxs, face_idxs = closest_point_barycentrics(self.v.detach().cpu().numpy(), self.vi.detach().cpu().numpy(), points)
interp_uv_coords = self.vt[interp_idxs, :] # [N, 3, 2]
# do bary interp first to get interp_uv_coord in high-reso uv space
target_uv_coords = th.sum(interp_uv_coords * th.from_numpy(barys)[..., None], dim=1).float()
# then directly sample from uv space
sampled_values = sample_uv(values_uv=uv_img.permute(2, 0, 1)[None, ...], uv_coords=target_uv_coords) # [1, count, c]
approx_values = sampled_values[0].reshape(num_pts, uv_img.shape[2])
return approx_values.numpy(), points
def vert_sample_uv(self, uv_img):
count = self.v.shape[0]
points = self.v.detach().cpu().numpy()
approx_values, _ = self.sample_uv_from_3dpts(points, uv_img)
return approx_values
def sample_uv(
values_uv,
uv_coords,
v2uv: Optional[th.Tensor] = None,
mode: str = "bilinear",
align_corners: bool = True,
flip_uvs: bool = False,
):
batch_size = values_uv.shape[0]
if flip_uvs:
uv_coords = uv_coords.clone()
uv_coords[:, 1] = 1.0 - uv_coords[:, 1]
# uv_coords_norm is [1, N, 1, 2] afterwards
uv_coords_norm = (uv_coords * 2.0 - 1.0)[np.newaxis, :, np.newaxis].expand(
batch_size, -1, -1, -1
)
# uv_shape = values_uv.shape[-2:]
# uv_max_shape_ind = uv_shape.index(max(uv_shape))
# uv_min_shape_ind = uv_shape.index(min(uv_shape))
# uv_ratio = uv_shape[uv_max_shape_ind] / uv_shape[uv_min_shape_ind]
# uv_coords_norm[..., uv_min_shape_ind] *= uv_ratio
values = (
F.grid_sample(values_uv, uv_coords_norm, align_corners=align_corners, mode=mode)
.squeeze(-1)
.permute((0, 2, 1))
)
if v2uv is not None:
values_duplicate = values[:, v2uv]
values = values_duplicate.mean(2)
return values
def values_to_uv(values, index_img, bary_img):
uv_size = index_img.shape
index_mask = th.all(index_img != -1, dim=-1)
idxs_flat = index_img[index_mask].to(th.int64)
bary_flat = bary_img[index_mask].to(th.float32)
# NOTE: here we assume
values_flat = th.sum(values[:, idxs_flat].permute(0, 3, 1, 2) * bary_flat, dim=-1)
values_uv = th.zeros(
values.shape[0],
values.shape[-1],
uv_size[0],
uv_size[1],
dtype=values.dtype,
device=values.device,
)
values_uv[:, :, index_mask] = values_flat
return values_uv
def face_normals(v, vi, eps: float = 1e-5):
pts = v[:, vi]
v0 = pts[:, :, 1] - pts[:, :, 0]
v1 = pts[:, :, 2] - pts[:, :, 0]
n = th.cross(v0, v1, dim=-1)
norm = th.norm(n, dim=-1, keepdim=True)
norm[norm < eps] = 1
n /= norm
return n
def vert_normals(v, vi, eps: float = 1.0e-5):
fnorms = face_normals(v, vi)
fnorms = fnorms[:, :, None].expand(-1, -1, 3, -1).reshape(fnorms.shape[0], -1, 3)
vi_flat = vi.view(1, -1).expand(v.shape[0], -1)
vnorms = th.zeros_like(v)
for j in range(3):
vnorms[..., j].scatter_add_(1, vi_flat, fnorms[..., j])
norm = th.norm(vnorms, dim=-1, keepdim=True)
norm[norm < eps] = 1
vnorms /= norm
return vnorms
def compute_view_cos(verts, faces, camera_pos):
vn = F.normalize(vert_normals(verts, faces), dim=-1)
v2c = F.normalize(verts - camera_pos[:, np.newaxis], dim=-1)
return th.einsum("bnd,bnd->bn", vn, v2c)
def compute_tbn(geom, vt, vi, vti):
"""Computes tangent, bitangent, and normal vectors given a mesh.
Args:
geom: [N, n_verts, 3] th.Tensor
Vertex positions.
vt: [n_uv_coords, 2] th.Tensor
UV coordinates.
vi: [..., 3] th.Tensor
Face vertex indices.
vti: [..., 3] th.Tensor
Face UV indices.
Returns:
[..., 3] th.Tensors for T, B, N.
"""
v0 = geom[:, vi[..., 0]]
v1 = geom[:, vi[..., 1]]
v2 = geom[:, vi[..., 2]]
vt0 = vt[vti[..., 0]]
vt1 = vt[vti[..., 1]]
vt2 = vt[vti[..., 2]]
v01 = v1 - v0
v02 = v2 - v0
vt01 = vt1 - vt0
vt02 = vt2 - vt0
f = 1.0 / (
vt01[None, ..., 0] * vt02[None, ..., 1]
- vt01[None, ..., 1] * vt02[None, ..., 0]
)
tangent = f[..., None] * th.stack(
[
v01[..., 0] * vt02[None, ..., 1] - v02[..., 0] * vt01[None, ..., 1],
v01[..., 1] * vt02[None, ..., 1] - v02[..., 1] * vt01[None, ..., 1],
v01[..., 2] * vt02[None, ..., 1] - v02[..., 2] * vt01[None, ..., 1],
],
dim=-1,
)
tangent = F.normalize(tangent, dim=-1)
normal = F.normalize(th.cross(v01, v02, dim=3), dim=-1)
bitangent = F.normalize(th.cross(tangent, normal, dim=3), dim=-1)
return tangent, bitangent, normal
def compute_v2uv(n_verts, vi, vti, n_max=4):
"""Computes mapping from vertex indices to texture indices.
Args:
vi: [F, 3], triangles
vti: [F, 3], texture triangles
n_max: int, max number of texture locations
Returns:
[n_verts, n_max], texture indices
"""
v2uv_dict = {}
for i_v, i_uv in zip(vi.reshape(-1), vti.reshape(-1)):
v2uv_dict.setdefault(i_v, set()).add(i_uv)
assert len(v2uv_dict) == n_verts
v2uv = np.zeros((n_verts, n_max), dtype=np.int32)
for i in range(n_verts):
vals = sorted(list(v2uv_dict[i]))
v2uv[i, :] = vals[0]
v2uv[i, : len(vals)] = np.array(vals)
return v2uv
def compute_neighbours(n_verts, vi, n_max_values=10):
"""Computes first-ring neighbours given vertices and faces."""
n_vi = vi.shape[0]
adj = {i: set() for i in range(n_verts)}
for i in range(n_vi):
for idx in vi[i]:
adj[idx] |= set(vi[i]) - set([idx])
nbs_idxs = np.tile(np.arange(n_verts)[:, np.newaxis], (1, n_max_values))
nbs_weights = np.zeros((n_verts, n_max_values), dtype=np.float32)
for idx in range(n_verts):
n_values = min(len(adj[idx]), n_max_values)
nbs_idxs[idx, :n_values] = np.array(list(adj[idx]))[:n_values]
nbs_weights[idx, :n_values] = -1.0 / n_values
return nbs_idxs, nbs_weights
def make_postex(v, idxim, barim):
return (
barim[None, :, :, 0, None] * v[:, idxim[:, :, 0]]
+ barim[None, :, :, 1, None] * v[:, idxim[:, :, 1]]
+ barim[None, :, :, 2, None] * v[:, idxim[:, :, 2]]
).permute(0, 3, 1, 2)
def matrix_to_axisangle(r):
th = th.arccos(0.5 * (r[..., 0, 0] + r[..., 1, 1] + r[..., 2, 2] - 1.0))[..., None]
vec = (
0.5
* th.stack(
[
r[..., 2, 1] - r[..., 1, 2],
r[..., 0, 2] - r[..., 2, 0],
r[..., 1, 0] - r[..., 0, 1],
],
dim=-1,
)
/ th.sin(th)
)
return th, vec
def axisangle_to_matrix(rvec):
theta = th.sqrt(1e-5 + th.sum(rvec**2, dim=-1))
rvec = rvec / theta[..., None]
costh = th.cos(theta)
sinth = th.sin(theta)
return th.stack(
(
th.stack(
(
rvec[..., 0] ** 2 + (1.0 - rvec[..., 0] ** 2) * costh,
rvec[..., 0] * rvec[..., 1] * (1.0 - costh) - rvec[..., 2] * sinth,
rvec[..., 0] * rvec[..., 2] * (1.0 - costh) + rvec[..., 1] * sinth,
),
dim=-1,
),
th.stack(
(
rvec[..., 0] * rvec[..., 1] * (1.0 - costh) + rvec[..., 2] * sinth,
rvec[..., 1] ** 2 + (1.0 - rvec[..., 1] ** 2) * costh,
rvec[..., 1] * rvec[..., 2] * (1.0 - costh) - rvec[..., 0] * sinth,
),
dim=-1,
),
th.stack(
(
rvec[..., 0] * rvec[..., 2] * (1.0 - costh) - rvec[..., 1] * sinth,
rvec[..., 1] * rvec[..., 2] * (1.0 - costh) + rvec[..., 0] * sinth,
rvec[..., 2] ** 2 + (1.0 - rvec[..., 2] ** 2) * costh,
),
dim=-1,
),
),
dim=-2,
)
def rotation_interp(r0, r1, alpha):
r0a = r0.view(-1, 3, 3)
r1a = r1.view(-1, 3, 3)
r = th.bmm(r0a.permute(0, 2, 1), r1a).view_as(r0)
th, rvec = matrix_to_axisangle(r)
rvec = rvec * (alpha * th)
r = axisangle_to_matrix(rvec)
return th.bmm(r0a, r.view(-1, 3, 3)).view_as(r0)
def convert_camera_parameters(Rt, K):
R = Rt[:, :3, :3]
t = -R.permute(0, 2, 1).bmm(Rt[:, :3, 3].unsqueeze(2)).squeeze(2)
return dict(
campos=t,
camrot=R,
focal=K[:, :2, :2],
princpt=K[:, :2, 2],
)
def project_points_multi(p, Rt, K, normalize=False, size=None):
"""Project a set of 3D points into multiple cameras with a pinhole model.
Args:
p: [B, N, 3], input 3D points in world coordinates
Rt: [B, NC, 3, 4], extrinsics (where NC is the number of cameras to project to)
K: [B, NC, 3, 3], intrinsics
normalize: bool, whether to normalize coordinates to [-1.0, 1.0]
Returns:
tuple:
- [B, NC, N, 2] - projected points
- [B, NC, N] - their
"""
B, N = p.shape[:2]
NC = Rt.shape[1]
Rt = Rt.reshape(B * NC, 3, 4)
K = K.reshape(B * NC, 3, 3)
# [B, N, 3] -> [B * NC, N, 3]
p = p[:, np.newaxis].expand(-1, NC, -1, -1).reshape(B * NC, -1, 3)
p_cam = p @ Rt[:, :3, :3].transpose(-2, -1) + Rt[:, :3, 3][:, np.newaxis]
p_pix = p_cam @ K.transpose(-2, -1)
p_depth = p_pix[:, :, 2:]
p_pix = (p_pix[..., :2] / p_depth).reshape(B, NC, N, 2)
p_depth = p_depth.reshape(B, NC, N)
if normalize:
assert size is not None
h, w = size
p_pix = (
2.0 * p_pix / th.as_tensor([w, h], dtype=th.float32, device=p.device) - 1.0
)
return p_pix, p_depth
|