Spaces:
Running
on
L4
Running
on
L4
File size: 4,498 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch as th
import torch.nn as nn
import numpy as np
from dva.mvp.models.utils import Conv2dWN, Conv2dWNUB, ConvTranspose2dWNUB, initmod
class ConvBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
size,
lrelu_slope=0.2,
kernel_size=3,
padding=1,
wnorm_dim=0,
):
super().__init__()
self.conv_resize = Conv2dWN(in_channels, out_channels, kernel_size=1)
self.conv1 = Conv2dWNUB(
in_channels,
in_channels,
kernel_size=kernel_size,
padding=padding,
height=size,
width=size,
)
self.lrelu1 = nn.LeakyReLU(lrelu_slope)
self.conv2 = Conv2dWNUB(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=padding,
height=size,
width=size,
)
self.lrelu2 = nn.LeakyReLU(lrelu_slope)
def forward(self, x):
x_skip = self.conv_resize(x)
x = self.conv1(x)
x = self.lrelu1(x)
x = self.conv2(x)
x = self.lrelu2(x)
return x + x_skip
def tile2d(x, size: int):
"""Tile a given set of features into a convolutional map.
Args:
x: float tensor of shape [N, F]
size: int or a tuple
Returns:
a feature map [N, F, size[0], size[1]]
"""
# size = size if isinstance(size, tuple) else (size, size)
# NOTE: expecting only int here (!!!)
return x[:, :, np.newaxis, np.newaxis].expand(-1, -1, size, size)
def weights_initializer(m, alpha: float = 1.0):
return initmod(m, nn.init.calculate_gain("leaky_relu", alpha))
class UNetWB(nn.Module):
def __init__(
self,
in_channels,
out_channels,
size,
n_init_ftrs=8,
out_scale=0.1,
):
# super().__init__(*args, **kwargs)
super().__init__()
self.out_scale = 0.1
F = n_init_ftrs
# TODO: allow changing the size?
self.size = size
self.down1 = nn.Sequential(
Conv2dWNUB(in_channels, F, self.size // 2, self.size // 2, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.down2 = nn.Sequential(
Conv2dWNUB(F, 2 * F, self.size // 4, self.size // 4, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.down3 = nn.Sequential(
Conv2dWNUB(2 * F, 4 * F, self.size // 8, self.size // 8, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.down4 = nn.Sequential(
Conv2dWNUB(4 * F, 8 * F, self.size // 16, self.size // 16, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.down5 = nn.Sequential(
Conv2dWNUB(8 * F, 16 * F, self.size // 32, self.size // 32, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.up1 = nn.Sequential(
ConvTranspose2dWNUB(
16 * F, 8 * F, self.size // 16, self.size // 16, 4, 2, 1
),
nn.LeakyReLU(0.2),
)
self.up2 = nn.Sequential(
ConvTranspose2dWNUB(8 * F, 4 * F, self.size // 8, self.size // 8, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.up3 = nn.Sequential(
ConvTranspose2dWNUB(4 * F, 2 * F, self.size // 4, self.size // 4, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.up4 = nn.Sequential(
ConvTranspose2dWNUB(2 * F, F, self.size // 2, self.size // 2, 4, 2, 1),
nn.LeakyReLU(0.2),
)
self.up5 = nn.Sequential(
ConvTranspose2dWNUB(F, F, self.size, self.size, 4, 2, 1), nn.LeakyReLU(0.2)
)
self.out = Conv2dWNUB(
F + in_channels, out_channels, self.size, self.size, kernel_size=1
)
self.apply(lambda x: initmod(x, 0.2))
initmod(self.out, 1.0)
def forward(self, x):
x1 = x
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x6 = self.down5(x5)
# TODO: switch to concat?
x = self.up1(x6) + x5
x = self.up2(x) + x4
x = self.up3(x) + x3
x = self.up4(x) + x2
x = self.up5(x)
x = th.cat([x, x1], dim=1)
return self.out(x) * self.out_scale
|