File size: 9,143 Bytes
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch.nn as nn
import torch as th
import numpy as np

import logging

from .vgg import VGGLossMasked

logger = logging.getLogger("dva.{__name__}")

class DCTLoss(nn.Module):
    def __init__(self, weights):
        super().__init__()
        self.weights = weights

    def forward(self, inputs, preds, iteration=None):
        loss_dict = {"loss_total": 0.0}
        target = inputs['gt']
        recon = preds['recon']
        posterior = preds['posterior']
        fft_gt = th.view_as_real(th.fft.fft(target.reshape(target.shape[0], -1)))
        fft_recon = th.view_as_real(th.fft.fft(recon.reshape(recon.shape[0], -1)))
        loss_recon_dct_l1 = th.mean(th.abs(fft_gt - fft_recon))
        loss_recon_l1 = th.mean(th.abs(target - recon))
        loss_kl = posterior.kl().mean()
        loss_dict.update(loss_recon_l1=loss_recon_l1, loss_recon_dct_l1=loss_recon_dct_l1, loss_kl=loss_kl)
        loss_total = self.weights.recon * loss_recon_dct_l1 + self.weights.kl * loss_kl

        loss_dict["loss_total"] = loss_total
        return loss_total, loss_dict

class VAESepL2Loss(nn.Module):
    def __init__(self, weights):
        super().__init__()
        self.weights = weights

    def forward(self, inputs, preds, iteration=None):
        loss_dict = {"loss_total": 0.0}
        target = inputs['gt']
        recon = preds['recon']
        posterior = preds['posterior']
        recon_diff = (target - recon) ** 2
        loss_recon_sdf_l1 = th.mean(recon_diff[:, 0:1, ...])
        loss_recon_rgb_l1 = th.mean(recon_diff[:, 1:4, ...])
        loss_recon_mat_l1 = th.mean(recon_diff[:, 4:6, ...])
        loss_kl = posterior.kl().mean()
        loss_dict.update(loss_sdf_l1=loss_recon_sdf_l1, loss_rgb_l1=loss_recon_rgb_l1, loss_mat_l1=loss_recon_mat_l1, loss_kl=loss_kl)
        loss_total = self.weights.sdf * loss_recon_sdf_l1 + self.weights.rgb * loss_recon_rgb_l1 + self.weights.mat * loss_recon_mat_l1
        if "kl" in self.weights:
            loss_total += self.weights.kl * loss_kl

        loss_dict["loss_total"] = loss_total
        return loss_total, loss_dict

class VAESepLoss(nn.Module):
    def __init__(self, weights):
        super().__init__()
        self.weights = weights

    def forward(self, inputs, preds, iteration=None):
        loss_dict = {"loss_total": 0.0}
        target = inputs['gt']
        recon = preds['recon']
        posterior = preds['posterior']
        recon_diff = th.abs(target - recon)
        loss_recon_sdf_l1 = th.mean(recon_diff[:, 0:1, ...])
        loss_recon_rgb_l1 = th.mean(recon_diff[:, 1:4, ...])
        loss_recon_mat_l1 = th.mean(recon_diff[:, 4:6, ...])
        loss_kl = posterior.kl().mean()
        loss_dict.update(loss_sdf_l1=loss_recon_sdf_l1, loss_rgb_l1=loss_recon_rgb_l1, loss_mat_l1=loss_recon_mat_l1, loss_kl=loss_kl)
        loss_total = self.weights.sdf * loss_recon_sdf_l1 + self.weights.rgb * loss_recon_rgb_l1 + self.weights.mat * loss_recon_mat_l1
        if "kl" in self.weights:
            loss_total += self.weights.kl * loss_kl

        loss_dict["loss_total"] = loss_total
        return loss_total, loss_dict

class VAELoss(nn.Module):
    def __init__(self, weights):
        super().__init__()
        self.weights = weights

    def forward(self, inputs, preds, iteration=None):
        loss_dict = {"loss_total": 0.0}
        target = inputs['gt']
        recon = preds['recon']
        posterior = preds['posterior']
        loss_recon_l1 = th.mean(th.abs(target - recon))
        loss_kl = posterior.kl().mean()
        loss_dict.update(loss_recon_l1=loss_recon_l1, loss_kl=loss_kl)
        loss_total = self.weights.recon * loss_recon_l1 + self.weights.kl * loss_kl

        loss_dict["loss_total"] = loss_total
        return loss_total, loss_dict

class PrimSDFLoss(nn.Module):
    def __init__(self, weights, shape_opt_steps=2000, tex_opt_steps=6000):
        super().__init__()
        self.weights = weights
        self.shape_opt_steps = shape_opt_steps
        self.tex_opt_steps = tex_opt_steps
    
    def forward(self, inputs, preds, iteration=None):
        loss_dict = {"loss_total": 0.0}

        if iteration < self.shape_opt_steps:
            target_sdf = inputs['sdf']
            sdf = preds['sdf']
            loss_sdf_l1 = th.mean(th.abs(sdf - target_sdf))
            loss_dict.update(loss_sdf_l1=loss_sdf_l1)
            loss_total = self.weights.sdf_l1 * loss_sdf_l1

            prim_scale = preds["prim_scale"]
            # we use 1/scale instead of the original 100/scale as our scale is normalized to [-1, 1] cube
            if "vol_sum" in self.weights:
                loss_prim_vol_sum = th.mean(th.sum(th.prod(1 / prim_scale, dim=-1), dim=-1))
                loss_dict.update(loss_prim_vol_sum=loss_prim_vol_sum)
                loss_total += self.weights.vol_sum * loss_prim_vol_sum
        
        if iteration >= self.shape_opt_steps and iteration < self.tex_opt_steps:
            target_tex = inputs['tex']
            tex = preds['tex']
            loss_tex_l1 = th.mean(th.abs(tex - target_tex))
            loss_dict.update(loss_tex_l1=loss_tex_l1)
            
            loss_total = (
                self.weights.rgb_l1 * loss_tex_l1
            )
            if "mat_l1" in self.weights:
                target_mat = inputs['mat']
                mat = preds['mat']
                loss_mat_l1 = th.mean(th.abs(mat - target_mat))
                loss_dict.update(loss_mat_l1=loss_mat_l1)
                loss_total += self.weights.mat_l1 * loss_mat_l1

        if "grad_l2" in self.weights:
            loss_grad_l2 = th.mean((preds["grad"] - inputs["grad"]) ** 2)
            loss_total += self.weights.grad_l2 * loss_grad_l2
            loss_dict.update(loss_grad_l2=loss_grad_l2)

        loss_dict["loss_total"] = loss_total
        return loss_total, loss_dict


class TotalMVPLoss(nn.Module):
    def __init__(self, weights, assets=None):
        super().__init__()

        self.weights = weights

        if "vgg" in self.weights:
            self.vgg_loss = VGGLossMasked()

    def forward(self, inputs, preds, iteration=None):

        loss_dict = {"loss_total": 0.0}

        B = inputs["image"].shape

        # rgb
        target_rgb = inputs["image"].permute(0, 2, 3, 1)
        # removing the mask
        target_rgb = target_rgb * inputs["image_mask"][:, 0, :, :, np.newaxis]

        rgb = preds["rgb"]
        loss_rgb_mse = th.mean(((rgb - target_rgb) / 16.0) ** 2.0)
        loss_dict.update(loss_rgb_mse=loss_rgb_mse)

        alpha = preds["alpha"]

        # mask loss
        target_mask = inputs["image_mask"][:, 0].to(th.float32)
        loss_mask_mae = th.mean((target_mask - alpha).abs())
        loss_dict.update(loss_mask_mae=loss_mask_mae)

        B = alpha.shape[0]

        # beta prior on opacity
        loss_alpha_prior = th.mean(
            th.log(0.1 + alpha.reshape(B, -1))
            + th.log(0.1 + 1.0 - alpha.reshape(B, -1))
            - -2.20727
        )
        loss_dict.update(loss_alpha_prior=loss_alpha_prior)

        prim_scale = preds["prim_scale"]
        loss_prim_vol_sum = th.mean(th.sum(th.prod(100.0 / prim_scale, dim=-1), dim=-1))
        loss_dict.update(loss_prim_vol_sum=loss_prim_vol_sum)

        loss_total = (
            self.weights.rgb_mse * loss_rgb_mse
            + self.weights.mask_mae * loss_mask_mae
            + self.weights.alpha_prior * loss_alpha_prior
            + self.weights.prim_vol_sum * loss_prim_vol_sum
        )

        if "embs_l2" in self.weights:
            loss_embs_l2 = th.sum(th.norm(preds["embs"], dim=1))
            loss_total += self.weights.embs_l2 * loss_embs_l2
            loss_dict.update(loss_embs_l2=loss_embs_l2)

        if "vgg" in self.weights:
            loss_vgg = self.vgg_loss(
                rgb.permute(0, 3, 1, 2),
                target_rgb.permute(0, 3, 1, 2),
                inputs["image_mask"],
            )
            loss_total += self.weights.vgg * loss_vgg
            loss_dict.update(loss_vgg=loss_vgg)

        if "prim_scale_var" in self.weights:
            log_prim_scale = th.log(prim_scale)
            # NOTE: should we detach this?
            log_prim_scale_mean = th.mean(log_prim_scale, dim=1, keepdim=True)
            loss_prim_scale_var = th.mean((log_prim_scale - log_prim_scale_mean) ** 2.0)
            loss_total += self.weights.prim_scale_var * loss_prim_scale_var
            loss_dict.update(loss_prim_scale_var=loss_prim_scale_var)

        loss_dict["loss_total"] = loss_total

        return loss_total, loss_dict


def process_losses(loss_dict, reduce=True, detach=True):
    """Preprocess the dict of losses outputs."""
    result = {
        k.replace("loss_", ""): v for k, v in loss_dict.items() if k.startswith("loss_")
    }
    if detach:
        result = {k: v.detach() for k, v in result.items()}
    if reduce:
        result = {k: float(v.mean().item()) for k, v in result.items()}
    return result