File size: 16,211 Bytes
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb029d0
81ecb2b
cb029d0
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d573a0
670f57e
 
 
 
9d573a0
670f57e
9d573a0
 
670f57e
9d573a0
670f57e
 
9d573a0
 
 
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb029d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
cb029d0
 
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670f57e
 
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import sys
import io

import torch
import numpy as np
from omegaconf import OmegaConf
import PIL.Image
from PIL import Image
import rembg

from dva.ray_marcher import RayMarcher
from dva.io import load_from_config
from dva.utils import to_device
from dva.visualize import visualize_primvolume, visualize_video_primvolume
from models.diffusion import create_diffusion
import logging
from tqdm import tqdm

import mcubes
import xatlas
import nvdiffrast.torch as dr
import cv2
from scipy.ndimage import binary_dilation, binary_erosion
from sklearn.neighbors import NearestNeighbors
from utils.meshutils import clean_mesh, decimate_mesh
from utils.mesh import Mesh
from utils.uv_unwrap import box_projection_uv_unwrap, compute_vertex_normal
logger = logging.getLogger("inference.py")
glctx = dr.RasterizeCudaContext()

def remove_background(image: PIL.Image.Image,
    rembg_session = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image

def resize_foreground(
    image: PIL.Image.Image,
    ratio: float,
) -> PIL.Image.Image:
    image = np.array(image)
    assert image.shape[-1] == 4
    alpha = np.where(image[..., 3] > 0)
    y1, y2, x1, x2 = (
        alpha[0].min(),
        alpha[0].max(),
        alpha[1].min(),
        alpha[1].max(),
    )
    # crop the foreground
    fg = image[y1:y2, x1:x2]
    # pad to square
    size = max(fg.shape[0], fg.shape[1])
    ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
    ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
    new_image = np.pad(
        fg,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )

    # compute padding according to the ratio
    new_size = int(new_image.shape[0] / ratio)
    # pad to size, double side
    ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
    ph1, pw1 = new_size - size - ph0, new_size - size - pw0
    new_image = np.pad(
        new_image,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )
    new_image = PIL.Image.fromarray(new_image)
    return new_image

def extract_texmesh(args, model, output_path, device):
    # Prepare directory
    ins_dir = output_path
    # Noise Filter
    raw_srt_param = model.srt_param.clone()
    raw_feat_param = model.feat_param.clone()
    prim_position = raw_srt_param[:, 1:4]
    prim_scale = raw_srt_param[:, 0:1]
    dist = torch.sqrt(torch.sum((prim_position[:, None, :] - prim_position[None, :, :]) ** 2, dim=-1))
    dist += torch.eye(prim_position.shape[0]).to(raw_srt_param)
    min_dist, min_indices = dist.min(1)
    dst_prim_scale = prim_scale[min_indices, :]
    min_scale_converage = prim_scale * 1. + dst_prim_scale * 1.
    prim_mask = min_dist < min_scale_converage[:, 0]
    filtered_srt_param = raw_srt_param[prim_mask, :]
    filtered_feat_param = raw_feat_param[prim_mask, ...]
    model.srt_param.data = filtered_srt_param
    model.feat_param.data = filtered_feat_param
    print(f'[INFO] Mesh Extraction on PrimX: srt={model.srt_param.shape} feat={model.feat_param.shape}')

    # Get SDFs
    with torch.no_grad():
        xx = torch.linspace(-1, 1, args.mc_resolution, device=device)
        pts = torch.stack(torch.meshgrid(xx, xx, xx, indexing='ij'), dim=-1).reshape(-1,3)
        chunks = torch.split(pts, args.batch_size)
        dists = []
        for chunk_pts in tqdm(chunks):
            preds = model(chunk_pts)
            dists.append(preds['sdf'].detach())
    dists = torch.cat(dists, dim=0)
    grid = dists.reshape(args.mc_resolution, args.mc_resolution, args.mc_resolution)

    # Meshify
    vertices, triangles = mcubes.marching_cubes(grid.cpu().numpy(), 0.0)
    
    # Resize + recenter
    b_min_np = np.array([-1., -1., -1.])
    b_max_np = np.array([ 1.,  1.,  1.])
    vertices = vertices / (args.mc_resolution - 1.0) * (b_max_np - b_min_np) + b_min_np

    vertices, triangles = clean_mesh(vertices, triangles, min_f=8, min_d=5, repair=True, remesh=False)

    if args.decimate > 0 and triangles.shape[0] > args.decimate:
        vertices, triangles = decimate_mesh(vertices, triangles, args.decimate, remesh=args.remesh)

    h0 = 1024
    w0 = 1024
    ssaa = 1
    fp16 = True
    v_np = vertices.astype(np.float32)
    f_np = triangles.astype(np.int64)
    v = torch.from_numpy(vertices).float().contiguous().to(device)
    f = torch.from_numpy(triangles.astype(np.int64)).to(torch.int64).contiguous().to(device)
    if args.fast_unwrap:
        print(f'[INFO] running box-based fast unwrapping to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
        v_normal = compute_vertex_normal(v, f)
        uv, indices = box_projection_uv_unwrap(v, v_normal, f, 0.02)
        indv_v = v[f].reshape(-1, 3)
        indv_faces = torch.arange(indv_v.shape[0], device=device, dtype=f.dtype).reshape(-1, 3)
        uv_flat = uv[indices].reshape((-1, 2))
        v = indv_v.contiguous()
        f = indv_faces.contiguous()
        ft_np = f.cpu().numpy()
        vt_np = uv_flat.cpu().numpy()
    else:
        print(f'[INFO] running xatlas to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
        # unwrap uv in contracted space
        atlas = xatlas.Atlas()
        atlas.add_mesh(v_np, f_np)
        chart_options = xatlas.ChartOptions()
        chart_options.max_iterations = 0 # disable merge_chart for faster unwrap...
        pack_options = xatlas.PackOptions()
        atlas.generate(chart_options=chart_options, pack_options=pack_options)
        _, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]

    vt = torch.from_numpy(vt_np.astype(np.float32)).float().contiguous().to(device)
    ft = torch.from_numpy(ft_np.astype(np.int64)).int().contiguous().to(device)
    uv = vt * 2.0 - 1.0 # uvs to range [-1, 1]
    uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]

    if ssaa > 1:
        h = int(h0 * ssaa)
        w = int(w0 * ssaa)
    else:
        h, w = h0, w0

    rast, _ = dr.rasterize(glctx, uv.unsqueeze(0), ft, (h, w)) # [1, h, w, 4]
    xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f.int()) # [1, h, w, 3]
    mask, _ = dr.interpolate(torch.ones_like(v[:, :1]).unsqueeze(0), rast, f.int()) # [1, h, w, 1]
    # masked query 
    xyzs = xyzs.view(-1, 3)
    mask = (mask > 0).view(-1)
    feats = torch.zeros(h * w, 6, device=device, dtype=torch.float32)

    if mask.any():
        xyzs = xyzs[mask] # [M, 3]
        # batched inference to avoid OOM
        all_feats = []
        head = 0
        chunk_size = args.batch_size
        while head < xyzs.shape[0]:
            tail = min(head + chunk_size, xyzs.shape[0])
            with torch.cuda.amp.autocast(enabled=fp16):
                preds = model(xyzs[head:tail])
                # [R, G, B, NA, roughness, metallic]
                all_feats.append(torch.concat([preds['tex'].float(), torch.zeros_like(preds['tex'])[..., 0:1].float(), preds['mat'].float()], dim=-1))
            head += chunk_size
        feats[mask] = torch.cat(all_feats, dim=0)
    feats = feats.view(h, w, -1) # 6 channels
    mask = mask.view(h, w)
    # quantize [0.0, 1.0] to [0, 255]
    feats = feats.cpu().numpy()
    feats = (feats * 255)

    ### NN search as a queer antialiasing ...
    mask = mask.cpu().numpy()
    inpaint_region = binary_dilation(mask, iterations=32) # pad width
    inpaint_region[mask] = 0
    search_region = mask.copy()
    not_search_region = binary_erosion(search_region, iterations=3)
    search_region[not_search_region] = 0
    search_coords = np.stack(np.nonzero(search_region), axis=-1)
    inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
    knn = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(search_coords)
    _, indices = knn.kneighbors(inpaint_coords)
    feats[tuple(inpaint_coords.T)] = feats[tuple(search_coords[indices[:, 0]].T)]

    target_mesh = Mesh(v=torch.from_numpy(v_np).contiguous(), f=torch.from_numpy(f_np).contiguous(), ft=ft.contiguous(), vt=torch.from_numpy(vt_np).contiguous(), albedo=torch.from_numpy(feats[..., :3]) / 255, metallicRoughness=torch.from_numpy(feats[..., 3:]) / 255)
    target_mesh.write(os.path.join(ins_dir, f'pbr_mesh.glb'))
    model.srt_param.data = raw_srt_param
    model.feat_param.data = raw_feat_param

def main(config):
    logging.basicConfig(level=logging.INFO)
    ddim_steps = config.inference.ddim
    if ddim_steps > 0:
        use_ddim = True
    else:
        use_ddim = False
    cfg_scale = config.inference.get("cfg", 0.0)

    inference_dir = f"{config.output_dir}/inference_folder"
    os.makedirs(inference_dir, exist_ok=True)

    amp = False
    precision = config.inference.get("precision", 'fp16')
    if precision == 'tf32':
        precision_dtype = torch.float32
    elif precision == 'fp16':
        amp = True
        precision_dtype = torch.float16
    else:
       raise NotImplementedError("{} precision is not supported".format(precision))

    device = torch.device(f"cuda:{0}")
    seed = config.inference.seed
    torch.manual_seed(seed)
    torch.cuda.set_device(device)
    
    model = load_from_config(config.model.generator)
    vae = load_from_config(config.model.vae)
    conditioner = load_from_config(config.model.conditioner)
    vae_state_dict = torch.load(config.model.vae_checkpoint_path, map_location='cpu')
    vae.load_state_dict(vae_state_dict['model_state_dict'])
    
    if config.checkpoint_path:
        state_dict = torch.load(config.checkpoint_path, map_location='cpu')
        model.load_state_dict(state_dict['ema'])
    vae = vae.to(device)
    conditioner = conditioner.to(device)
    model = model.to(device)
    config.diffusion.pop("timestep_respacing")
    if use_ddim:
        respacing = "ddim{}".format(ddim_steps)
    else:
        respacing = ""
    diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion)  # default: 1000 steps, linear noise schedule
    if use_ddim:
        sample_fn = diffusion.ddim_sample_loop_progressive
    else:
        sample_fn = diffusion.p_sample_loop_progressive
    
    if cfg_scale > 0:
        fwd_fn = model.forward_with_cfg
    else:
        fwd_fn = model.forward

    rm = RayMarcher(
        config.image_height,
        config.image_width,
        **config.rm,
    ).to(device)

    perchannel_norm = False
    if "latent_mean" in config.model:
        latent_mean = torch.Tensor(config.model.latent_mean)[None, None, :].to(device)
        latent_std = torch.Tensor(config.model.latent_std)[None, None, :].to(device)
        assert latent_mean.shape[-1] == config.model.generator.in_channels
        perchannel_norm = True

    model.eval()
    examples_dir = config.inference.input_dir
    img_list = os.listdir(examples_dir)
    rembg_session = rembg.new_session()
    logger.info(f"Starting Inference...")
    for img_path in img_list:
        full_img_path = os.path.join(examples_dir, img_path)
        img_name = img_path[:-4]
        current_output_dir = os.path.join(inference_dir, img_name)
        os.makedirs(current_output_dir, exist_ok=True)
        input_image = Image.open(full_img_path)
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)
        raw_image = np.array(input_image)
        mask = (raw_image[..., -1][..., None] > 0) * 1
        raw_image = raw_image[..., :3] * mask
        input_cond = torch.from_numpy(np.array(raw_image)[None, ...]).to(device)
        with torch.no_grad():
            latent = torch.randn(1, config.model.num_prims, 1, 4, 4, 4)
            batch = {}
            inf_bs = 1
            inf_x = torch.randn(inf_bs, config.model.num_prims, 68).to(device)
            y = conditioner.encoder(input_cond)
            model_kwargs = dict(y=y[:inf_bs, ...], precision_dtype=precision_dtype, enable_amp=amp)
            if cfg_scale > 0:
                model_kwargs['cfg_scale'] = cfg_scale
            sampled_count = -1
            for samples in sample_fn(fwd_fn, inf_x.shape, inf_x, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
            ):
                sampled_count += 1
                if not (sampled_count % 10 == 0 or sampled_count == diffusion.num_timesteps - 1):
                    continue
                else:
                    recon_param = samples["sample"].reshape(inf_bs, config.model.num_prims, -1)
                    if perchannel_norm:
                        recon_param = recon_param / config.model.latent_nf * latent_std + latent_mean
                    recon_srt_param = recon_param[:, :, 0:4]
                    recon_feat_param = recon_param[:, :, 4:] # [8, 2048, 64]
                    recon_feat_param_list = []
                    # one-by-one to avoid oom
                    for inf_bidx in range(inf_bs):
                        if not perchannel_norm:
                            decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]) / config.model.latent_nf)
                        else:
                            decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]))
                        recon_feat_param_list.append(decoded.detach())
                    recon_feat_param = torch.concat(recon_feat_param_list, dim=0)
                    # invert normalization
                    if not perchannel_norm:
                        recon_srt_param[:, :, 0:1] = (recon_srt_param[:, :, 0:1] / 10) + 0.05
                    recon_feat_param[:, 0:1, ...] /= 5.
                    recon_feat_param[:, 1:, ...] = (recon_feat_param[:, 1:, ...] + 1) / 2.
                    recon_feat_param = recon_feat_param.reshape(inf_bs, config.model.num_prims, -1)
                    recon_param = torch.concat([recon_srt_param, recon_feat_param], dim=-1)
                    visualize_primvolume("{}/dstep{:04d}_recon.jpg".format(current_output_dir, sampled_count), batch, recon_param, rm, device)
            visualize_video_primvolume(current_output_dir, batch, recon_param, 60, rm, device)
            prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
            torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(current_output_dir))

    if config.inference.export_glb:
        logger.info(f"Starting GLB Mesh Extraction...")
        config.model.pop("vae")
        config.model.pop("vae_checkpoint_path")
        config.model.pop("conditioner")
        config.model.pop("generator")
        config.model.pop("latent_nf")
        config.model.pop("latent_mean")
        config.model.pop("latent_std")
        model_primx = load_from_config(config.model)
        for img_path in img_list:
            img_name = img_path[:-4]
            output_path = os.path.join(inference_dir, img_name)
            denoise_param_path = os.path.join(inference_dir, img_name, 'denoised.pt')
            ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict']
            model_primx.load_state_dict(ckpt_weight)
            model_primx.to(device)
            model_primx.eval()
            with torch.no_grad():
                model_primx.srt_param[:, 1:4] *= 0.85
                extract_texmesh(config.inference, model_primx, output_path, device)

if __name__ == "__main__":
    torch.backends.cudnn.benchmark = True
    # manually enable tf32 to get speedup on A100 GPUs
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    # set config
    config = OmegaConf.load(str(sys.argv[1]))
    config_cli = OmegaConf.from_cli(args_list=sys.argv[2:])
    if config_cli:
        logger.info("overriding with following values from args:")
        logger.info(OmegaConf.to_yaml(config_cli))
        config = OmegaConf.merge(config, config_cli)

    main(config)