Spaces:
Sleeping
Sleeping
import os | |
import imageio | |
import numpy as np | |
os.system("bash install.sh") | |
from omegaconf import OmegaConf | |
import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
import rembg | |
import gradio as gr | |
from gradio_litmodel3d import LitModel3D | |
from dva.io import load_from_config | |
from dva.ray_marcher import RayMarcher | |
from dva.visualize import visualize_primvolume, visualize_video_primvolume | |
from inference import remove_background, resize_foreground, extract_texmesh | |
from models.diffusion import create_diffusion | |
from huggingface_hub import hf_hub_download | |
ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_sview_dit_fp16.pt") | |
vae_ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_vae_fp16.pt") | |
GRADIO_PRIM_VIDEO_PATH = 'prim.mp4' | |
GRADIO_RGB_VIDEO_PATH = 'rgb.mp4' | |
GRADIO_MAT_VIDEO_PATH = 'mat.mp4' | |
GRADIO_GLB_PATH = 'pbr_mesh.glb' | |
CONFIG_PATH = "./configs/inference_dit.yml" | |
config = OmegaConf.load(CONFIG_PATH) | |
config.checkpoint_path = ckpt_path | |
config.model.vae_checkpoint_path = vae_ckpt_path | |
# model | |
model = load_from_config(config.model.generator) | |
state_dict = torch.load(config.checkpoint_path, map_location='cpu') | |
model.load_state_dict(state_dict['ema']) | |
vae = load_from_config(config.model.vae) | |
vae_state_dict = torch.load(config.model.vae_checkpoint_path, map_location='cpu') | |
vae.load_state_dict(vae_state_dict['model_state_dict']) | |
conditioner = load_from_config(config.model.conditioner) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
vae = vae.to(device) | |
conditioner = conditioner.to(device) | |
model = model.to(device) | |
model.eval() | |
amp = True | |
precision_dtype = torch.float16 | |
rm = RayMarcher( | |
config.image_height, | |
config.image_width, | |
**config.rm, | |
).to(device) | |
perchannel_norm = False | |
if "latent_mean" in config.model: | |
latent_mean = torch.Tensor(config.model.latent_mean)[None, None, :].to(device) | |
latent_std = torch.Tensor(config.model.latent_std)[None, None, :].to(device) | |
assert latent_mean.shape[-1] == config.model.generator.in_channels | |
perchannel_norm = True | |
latent_nf = config.model.latent_nf | |
config.diffusion.pop("timestep_respacing") | |
config.model.pop("vae") | |
config.model.pop("vae_checkpoint_path") | |
config.model.pop("conditioner") | |
config.model.pop("generator") | |
config.model.pop("latent_nf") | |
config.model.pop("latent_mean") | |
config.model.pop("latent_std") | |
model_primx = load_from_config(config.model) | |
# load rembg | |
rembg_session = rembg.new_session() | |
# process function | |
def process(input_image, input_num_steps, input_seed=42, input_cfg=6.0): | |
# seed | |
torch.manual_seed(input_seed) | |
os.makedirs(config.output_dir, exist_ok=True) | |
output_rgb_video_path = os.path.join(config.output_dir, GRADIO_RGB_VIDEO_PATH) | |
output_prim_video_path = os.path.join(config.output_dir, GRADIO_PRIM_VIDEO_PATH) | |
output_mat_video_path = os.path.join(config.output_dir, GRADIO_MAT_VIDEO_PATH) | |
respacing = "ddim{}".format(input_num_steps) | |
diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion) | |
sample_fn = diffusion.ddim_sample_loop_progressive | |
fwd_fn = model.forward_with_cfg | |
# text-conditioned | |
if input_image is None: | |
raise NotImplementedError | |
# image-conditioned (may also input text, but no text usually works too) | |
else: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 0.85) | |
raw_image = np.array(input_image) | |
mask = (raw_image[..., -1][..., None] > 0) * 1 | |
raw_image = raw_image[..., :3] * mask | |
input_cond = torch.from_numpy(np.array(raw_image)[None, ...]).to(device) | |
with torch.no_grad(): | |
latent = torch.randn(1, config.model.num_prims, 1, 4, 4, 4) | |
batch = {} | |
inf_bs = 1 | |
inf_x = torch.randn(inf_bs, config.model.num_prims, 68).to(device) | |
y = conditioner.encoder(input_cond) | |
model_kwargs = dict(y=y[:inf_bs, ...], precision_dtype=precision_dtype, enable_amp=amp) | |
if input_cfg >= 0: | |
model_kwargs['cfg_scale'] = input_cfg | |
for samples in sample_fn(fwd_fn, inf_x.shape, inf_x, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device): | |
final_samples = samples | |
recon_param = final_samples["sample"].reshape(inf_bs, config.model.num_prims, -1) | |
if perchannel_norm: | |
recon_param = recon_param / latent_nf * latent_std + latent_mean | |
recon_srt_param = recon_param[:, :, 0:4] | |
recon_feat_param = recon_param[:, :, 4:] # [8, 2048, 64] | |
recon_feat_param_list = [] | |
# one-by-one to avoid oom | |
for inf_bidx in range(inf_bs): | |
if not perchannel_norm: | |
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]) / latent_nf) | |
else: | |
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:])) | |
recon_feat_param_list.append(decoded.detach()) | |
recon_feat_param = torch.concat(recon_feat_param_list, dim=0) | |
# invert normalization | |
if not perchannel_norm: | |
recon_srt_param[:, :, 0:1] = (recon_srt_param[:, :, 0:1] / 10) + 0.05 | |
recon_feat_param[:, 0:1, ...] /= 5. | |
recon_feat_param[:, 1:, ...] = (recon_feat_param[:, 1:, ...] + 1) / 2. | |
recon_feat_param = recon_feat_param.reshape(inf_bs, config.model.num_prims, -1) | |
recon_param = torch.concat([recon_srt_param, recon_feat_param], dim=-1) | |
visualize_video_primvolume(config.output_dir, batch, recon_param, 60, rm, device) | |
prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()} | |
torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(config.output_dir)) | |
return output_rgb_video_path, output_prim_video_path, output_mat_video_path, gr.update(interactive=True) | |
def export_mesh(remesh=False, decimate=100000, mc_resolution=256): | |
# exporting GLB mesh | |
output_glb_path = os.path.join(config.output_dir, GRADIO_GLB_PATH) | |
config.inference.remesh = remesh | |
config.inference.decimate = decimate | |
config.inference.mc_resolution = mc_resolution | |
denoise_param_path = os.path.join(config.output_dir, 'denoised.pt') | |
primx_ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict'] | |
model_primx.load_state_dict(primx_ckpt_weight) | |
model_primx.to(device) | |
model_primx.eval() | |
with torch.no_grad(): | |
model_primx.srt_param[:, 1:4] *= 0.85 | |
extract_texmesh(config.inference, model_primx, config.output_dir, device) | |
return output_glb_path, gr.update(visible=True) | |
# gradio UI | |
_TITLE = '''3DTopia-XL''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href="https://frozenburning.github.io/projects/3DTopia-XL/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> | |
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/3DTopia-XL"><img src='https://img.shields.io/github/stars/3DTopia/3DTopia-XL?style=social'/></a> | |
</div> | |
* Now we offer 1) single image conditioned model, we will release 2) multiview images conditioned model and 3) pure text conditioned model in the future! | |
* If you find the output unsatisfying, try using different seeds! | |
''' | |
block = gr.Blocks(title=_TITLE).queue() | |
with block: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
# input image | |
input_image = gr.Image(label="image", type='pil') | |
# inference steps | |
input_num_steps = gr.Radio(choices=[25, 50, 100, 200], label="DDIM steps", value=25) | |
# random seed | |
input_cfg = gr.Slider(label="CFG scale", minimum=0, maximum=15, step=0.5, value=6, info="Typically CFG in a range of 4-7") | |
# random seed | |
input_seed = gr.Slider(label="random seed", minimum=0, maximum=10000, step=1, value=42, info="Try different seed if the result is not satisfying as this is a generative model!") | |
# gen button | |
button_gen = gr.Button("Generate") | |
export_glb_btn = gr.Button(value="Export GLB", interactive=False) | |
with gr.Column(scale=1): | |
with gr.Row(): | |
# final video results | |
output_rgb_video = gr.Video(label="RGB") | |
output_prim_video = gr.Video(label="Primitives") | |
output_mat_video = gr.Video(label="Material") | |
with gr.Row(): | |
# glb file | |
output_glb = LitModel3D( | |
label="3D GLB Model", | |
visible=True, | |
clear_color=[0.0, 0.0, 0.0, 0.0], | |
tonemapping="aces", | |
contrast=1.0, | |
scale=1.0, | |
) | |
with gr.Column(visible=False, scale=1.0) as hdr_row: | |
gr.Markdown("""## HDR Environment Map | |
Select / Upload an HDR environment map to light the 3D model. | |
""") | |
with gr.Row(): | |
hdr_illumination_file = gr.File( | |
label="HDR Envmap", file_types=[".hdr"], file_count="single" | |
) | |
example_hdris = [ | |
os.path.join("assets/hdri", f) | |
for f in os.listdir("assets/hdri") | |
] | |
hdr_illumination_example = gr.Examples( | |
examples=example_hdris, | |
inputs=hdr_illumination_file, | |
) | |
hdr_illumination_file.change( | |
lambda x: gr.update(env_map=x.name if x is not None else None), | |
inputs=hdr_illumination_file, | |
outputs=[output_glb], | |
) | |
button_gen.click(process, inputs=[input_image, input_num_steps, input_seed, input_cfg], outputs=[output_rgb_video, output_prim_video, output_mat_video, export_glb_btn]) | |
export_glb_btn.click(export_mesh, inputs=[], outputs=[output_glb, hdr_row]) | |
gr.Examples( | |
examples=[ | |
"assets/examples/fruit_elephant.jpg", | |
"assets/examples/mei_ling_panda.png", | |
"assets/examples/shuai_panda_notail.png", | |
], | |
inputs=[input_image], | |
outputs=[output_rgb_video, output_prim_video, output_mat_video, export_glb_btn], | |
fn=lambda x: process(input_image=x), | |
cache_examples=False, | |
label='Single Image to 3D PBR Asset' | |
) | |
block.launch(server_name="0.0.0.0", share=True) |