Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import torch | |
import trimesh | |
import numpy as np | |
from .typing import * | |
from .op import safe_normalize, dot | |
class Mesh: | |
""" | |
A torch-native trimesh class, with support for ``ply/obj/glb`` formats. | |
Note: | |
This class only supports one mesh with a single texture image (an albedo texture and a metallic-roughness texture). | |
""" | |
def __init__( | |
self, | |
v: Optional[Tensor] = None, | |
f: Optional[Tensor] = None, | |
vn: Optional[Tensor] = None, | |
fn: Optional[Tensor] = None, | |
vt: Optional[Tensor] = None, | |
ft: Optional[Tensor] = None, | |
vc: Optional[Tensor] = None, # vertex color | |
albedo: Optional[Tensor] = None, | |
metallicRoughness: Optional[Tensor] = None, | |
device: Optional[torch.device] = None, | |
): | |
"""Init a mesh directly using all attributes. | |
Args: | |
v (Optional[Tensor]): vertices, float [N, 3]. Defaults to None. | |
f (Optional[Tensor]): faces, int [M, 3]. Defaults to None. | |
vn (Optional[Tensor]): vertex normals, float [N, 3]. Defaults to None. | |
fn (Optional[Tensor]): faces for normals, int [M, 3]. Defaults to None. | |
vt (Optional[Tensor]): vertex uv coordinates, float [N, 2]. Defaults to None. | |
ft (Optional[Tensor]): faces for uvs, int [M, 3]. Defaults to None. | |
vc (Optional[Tensor]): vertex colors, float [N, 3]. Defaults to None. | |
albedo (Optional[Tensor]): albedo texture, float [H, W, 3], RGB format. Defaults to None. | |
metallicRoughness (Optional[Tensor]): metallic-roughness texture, float [H, W, 3], metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1]. Defaults to None. | |
device (Optional[torch.device]): torch device. Defaults to None. | |
""" | |
self.device = device | |
self.v = v | |
self.vn = vn | |
self.vt = vt | |
self.f = f | |
self.fn = fn | |
self.ft = ft | |
# will first see if there is vertex color to use | |
self.vc = vc | |
# only support a single albedo image | |
self.albedo = albedo | |
# pbr extension, metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1] | |
# ref: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html | |
self.metallicRoughness = metallicRoughness | |
self.ori_center = 0 | |
self.ori_scale = 1 | |
def load(cls, path, resize=True, clean=False, renormal=True, retex=False, bound=0.9, front_dir='+z', **kwargs): | |
"""load mesh from path. | |
Args: | |
path (str): path to mesh file, supports ply, obj, glb. | |
clean (bool, optional): perform mesh cleaning at load (e.g., merge close vertices). Defaults to False. | |
resize (bool, optional): auto resize the mesh using ``bound`` into [-bound, bound]^3. Defaults to True. | |
renormal (bool, optional): re-calc the vertex normals. Defaults to True. | |
retex (bool, optional): re-calc the uv coordinates, will overwrite the existing uv coordinates. Defaults to False. | |
bound (float, optional): bound to resize. Defaults to 0.9. | |
front_dir (str, optional): front-view direction of the mesh, should be [+-][xyz][ 123]. Defaults to '+z'. | |
device (torch.device, optional): torch device. Defaults to None. | |
Note: | |
a ``device`` keyword argument can be provided to specify the torch device. | |
If it's not provided, we will try to use ``'cuda'`` as the device if it's available. | |
Returns: | |
Mesh: the loaded Mesh object. | |
""" | |
# obj supports face uv | |
if path.endswith(".obj"): | |
mesh = cls.load_obj(path, **kwargs) | |
# trimesh only supports vertex uv, but can load more formats | |
else: | |
mesh = cls.load_trimesh(path, **kwargs) | |
# clean | |
if clean: | |
from .meshutils import clean_mesh | |
vertices = mesh.v.detach().cpu().numpy() | |
triangles = mesh.f.detach().cpu().numpy() | |
vertices, triangles = clean_mesh(vertices, triangles, remesh=False) | |
mesh.v = torch.from_numpy(vertices).contiguous().float().to(mesh.device) | |
mesh.f = torch.from_numpy(triangles).contiguous().int().to(mesh.device) | |
print(f"[INFO] load mesh, v: {mesh.v.shape}, f: {mesh.f.shape}") | |
# auto-normalize | |
if resize: | |
mesh.auto_size(bound=bound) | |
# auto-fix normal | |
if renormal or mesh.vn is None: | |
mesh.auto_normal() | |
print(f"[INFO] load mesh, vn: {mesh.vn.shape}, fn: {mesh.fn.shape}") | |
# auto-fix texcoords | |
if retex or (mesh.albedo is not None and mesh.vt is None): | |
mesh.auto_uv(cache_path=path) | |
print(f"[INFO] load mesh, vt: {mesh.vt.shape}, ft: {mesh.ft.shape}") | |
# rotate front dir to +z | |
if front_dir != "+z": | |
# axis switch | |
if "-z" in front_dir: | |
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, -1]], device=mesh.device, dtype=torch.float32) | |
elif "+x" in front_dir: | |
T = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32) | |
elif "-x" in front_dir: | |
T = torch.tensor([[0, 0, -1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32) | |
elif "+y" in front_dir: | |
T = torch.tensor([[1, 0, 0], [0, 0, 1], [0, 1, 0]], device=mesh.device, dtype=torch.float32) | |
elif "-y" in front_dir: | |
T = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=mesh.device, dtype=torch.float32) | |
else: | |
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32) | |
# rotation (how many 90 degrees) | |
if '1' in front_dir: | |
T @= torch.tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32) | |
elif '2' in front_dir: | |
T @= torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32) | |
elif '3' in front_dir: | |
T @= torch.tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32) | |
mesh.v @= T | |
mesh.vn @= T | |
return mesh | |
# load from obj file | |
def load_obj(cls, path, albedo_path=None, device=None): | |
"""load an ``obj`` mesh. | |
Args: | |
path (str): path to mesh. | |
albedo_path (str, optional): path to the albedo texture image, will overwrite the existing texture path if specified in mtl. Defaults to None. | |
device (torch.device, optional): torch device. Defaults to None. | |
Note: | |
We will try to read `mtl` path from `obj`, else we assume the file name is the same as `obj` but with `mtl` extension. | |
The `usemtl` statement is ignored, and we only use the last material path in `mtl` file. | |
Returns: | |
Mesh: the loaded Mesh object. | |
""" | |
assert os.path.splitext(path)[-1] == ".obj" | |
mesh = cls() | |
# device | |
if device is None: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
mesh.device = device | |
# load obj | |
with open(path, "r") as f: | |
lines = f.readlines() | |
def parse_f_v(fv): | |
# pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided) | |
# supported forms: | |
# f v1 v2 v3 | |
# f v1/vt1 v2/vt2 v3/vt3 | |
# f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3 | |
# f v1//vn1 v2//vn2 v3//vn3 | |
xs = [int(x) - 1 if x != "" else -1 for x in fv.split("/")] | |
xs.extend([-1] * (3 - len(xs))) | |
return xs[0], xs[1], xs[2] | |
vertices, texcoords, normals = [], [], [] | |
faces, tfaces, nfaces = [], [], [] | |
mtl_path = None | |
for line in lines: | |
split_line = line.split() | |
# empty line | |
if len(split_line) == 0: | |
continue | |
prefix = split_line[0].lower() | |
# mtllib | |
if prefix == "mtllib": | |
mtl_path = split_line[1] | |
# usemtl | |
elif prefix == "usemtl": | |
pass # ignored | |
# v/vn/vt | |
elif prefix == "v": | |
vertices.append([float(v) for v in split_line[1:]]) | |
elif prefix == "vn": | |
normals.append([float(v) for v in split_line[1:]]) | |
elif prefix == "vt": | |
val = [float(v) for v in split_line[1:]] | |
texcoords.append([val[0], 1.0 - val[1]]) | |
elif prefix == "f": | |
vs = split_line[1:] | |
nv = len(vs) | |
v0, t0, n0 = parse_f_v(vs[0]) | |
for i in range(nv - 2): # triangulate (assume vertices are ordered) | |
v1, t1, n1 = parse_f_v(vs[i + 1]) | |
v2, t2, n2 = parse_f_v(vs[i + 2]) | |
faces.append([v0, v1, v2]) | |
tfaces.append([t0, t1, t2]) | |
nfaces.append([n0, n1, n2]) | |
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device) | |
mesh.vt = ( | |
torch.tensor(texcoords, dtype=torch.float32, device=device) | |
if len(texcoords) > 0 | |
else None | |
) | |
mesh.vn = ( | |
torch.tensor(normals, dtype=torch.float32, device=device) | |
if len(normals) > 0 | |
else None | |
) | |
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device) | |
mesh.ft = ( | |
torch.tensor(tfaces, dtype=torch.int32, device=device) | |
if len(texcoords) > 0 | |
else None | |
) | |
mesh.fn = ( | |
torch.tensor(nfaces, dtype=torch.int32, device=device) | |
if len(normals) > 0 | |
else None | |
) | |
# see if there is vertex color | |
use_vertex_color = False | |
if mesh.v.shape[1] == 6: | |
use_vertex_color = True | |
mesh.vc = mesh.v[:, 3:] | |
mesh.v = mesh.v[:, :3] | |
print(f"[INFO] load obj mesh: use vertex color: {mesh.vc.shape}") | |
# try to load texture image | |
if not use_vertex_color: | |
# try to retrieve mtl file | |
mtl_path_candidates = [] | |
if mtl_path is not None: | |
mtl_path_candidates.append(mtl_path) | |
mtl_path_candidates.append(os.path.join(os.path.dirname(path), mtl_path)) | |
mtl_path_candidates.append(path.replace(".obj", ".mtl")) | |
mtl_path = None | |
for candidate in mtl_path_candidates: | |
if os.path.exists(candidate): | |
mtl_path = candidate | |
break | |
# if albedo_path is not provided, try retrieve it from mtl | |
metallic_path = None | |
roughness_path = None | |
if mtl_path is not None and albedo_path is None: | |
with open(mtl_path, "r") as f: | |
lines = f.readlines() | |
for line in lines: | |
split_line = line.split() | |
# empty line | |
if len(split_line) == 0: | |
continue | |
prefix = split_line[0] | |
if "map_Kd" in prefix: | |
# assume relative path! | |
albedo_path = os.path.join(os.path.dirname(path), split_line[1]) | |
print(f"[INFO] load obj mesh: use texture from: {albedo_path}") | |
elif "map_Pm" in prefix: | |
metallic_path = os.path.join(os.path.dirname(path), split_line[1]) | |
elif "map_Pr" in prefix: | |
roughness_path = os.path.join(os.path.dirname(path), split_line[1]) | |
# still not found albedo_path, or the path doesn't exist | |
if albedo_path is None or not os.path.exists(albedo_path): | |
# init an empty texture | |
print(f"[INFO] load obj mesh: init empty albedo!") | |
# albedo = np.random.rand(1024, 1024, 3).astype(np.float32) | |
albedo = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5]) # default color | |
else: | |
albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED) | |
albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB) | |
albedo = albedo.astype(np.float32) / 255 | |
print(f"[INFO] load obj mesh: load texture: {albedo.shape}") | |
mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device) | |
# try to load metallic and roughness | |
if metallic_path is not None and roughness_path is not None: | |
print(f"[INFO] load obj mesh: load metallicRoughness from: {metallic_path}, {roughness_path}") | |
metallic = cv2.imread(metallic_path, cv2.IMREAD_UNCHANGED) | |
metallic = metallic.astype(np.float32) / 255 | |
roughness = cv2.imread(roughness_path, cv2.IMREAD_UNCHANGED) | |
roughness = roughness.astype(np.float32) / 255 | |
metallicRoughness = np.stack([np.zeros_like(metallic), roughness, metallic], axis=-1) | |
mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous() | |
return mesh | |
def load_trimesh(cls, path, device=None): | |
"""load a mesh using ``trimesh.load()``. | |
Can load various formats like ``glb`` and serves as a fallback. | |
Note: | |
We will try to merge all meshes if the glb contains more than one, | |
but **this may cause the texture to lose**, since we only support one texture image! | |
Args: | |
path (str): path to the mesh file. | |
device (torch.device, optional): torch device. Defaults to None. | |
Returns: | |
Mesh: the loaded Mesh object. | |
""" | |
mesh = cls() | |
# device | |
if device is None: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
mesh.device = device | |
# use trimesh to load ply/glb | |
_data = trimesh.load(path) | |
# always convert scene to mesh, and apply all transforms... | |
if isinstance(_data, trimesh.Scene): | |
print(f"[INFO] load trimesh: concatenating {len(_data.geometry)} meshes.") | |
_concat = [] | |
# loop the scene graph and apply transform to each mesh | |
scene_graph = _data.graph.to_flattened() # dict {name: {transform: 4x4 mat, geometry: str}} | |
for k, v in scene_graph.items(): | |
name = v['geometry'] | |
if name in _data.geometry and isinstance(_data.geometry[name], trimesh.Trimesh): | |
transform = v['transform'] | |
_concat.append(_data.geometry[name].apply_transform(transform)) | |
_mesh = trimesh.util.concatenate(_concat) | |
else: | |
_mesh = _data | |
if _mesh.visual.kind == 'vertex': | |
vertex_colors = _mesh.visual.vertex_colors | |
vertex_colors = np.array(vertex_colors[..., :3]).astype(np.float32) / 255 | |
mesh.vc = torch.tensor(vertex_colors, dtype=torch.float32, device=device) | |
print(f"[INFO] load trimesh: use vertex color: {mesh.vc.shape}") | |
elif _mesh.visual.kind == 'texture': | |
_material = _mesh.visual.material | |
if isinstance(_material, trimesh.visual.material.PBRMaterial): | |
texture = np.array(_material.baseColorTexture).astype(np.float32) / 255 | |
# load metallicRoughness if present | |
if _material.metallicRoughnessTexture is not None: | |
metallicRoughness = np.array(_material.metallicRoughnessTexture).astype(np.float32) / 255 | |
mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous() | |
elif isinstance(_material, trimesh.visual.material.SimpleMaterial): | |
texture = np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255 | |
else: | |
raise NotImplementedError(f"material type {type(_material)} not supported!") | |
mesh.albedo = torch.tensor(texture[..., :3], dtype=torch.float32, device=device).contiguous() | |
print(f"[INFO] load trimesh: load texture: {texture.shape}") | |
else: | |
texture = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5]) | |
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device) | |
print(f"[INFO] load trimesh: failed to load texture.") | |
vertices = _mesh.vertices | |
try: | |
texcoords = _mesh.visual.uv | |
texcoords[:, 1] = 1 - texcoords[:, 1] | |
except Exception as e: | |
texcoords = None | |
try: | |
normals = _mesh.vertex_normals | |
except Exception as e: | |
normals = None | |
# trimesh only support vertex uv... | |
faces = tfaces = nfaces = _mesh.faces | |
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device) | |
mesh.vt = ( | |
torch.tensor(texcoords, dtype=torch.float32, device=device) | |
if texcoords is not None | |
else None | |
) | |
mesh.vn = ( | |
torch.tensor(normals, dtype=torch.float32, device=device) | |
if normals is not None | |
else None | |
) | |
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device) | |
mesh.ft = ( | |
torch.tensor(tfaces, dtype=torch.int32, device=device) | |
if texcoords is not None | |
else None | |
) | |
mesh.fn = ( | |
torch.tensor(nfaces, dtype=torch.int32, device=device) | |
if normals is not None | |
else None | |
) | |
return mesh | |
def parse_trimesh_data(cls, raw_data: trimesh.Trimesh, device=None): | |
mesh = cls() | |
mesh.device = device | |
_mesh = raw_data | |
if _mesh.visual.kind == 'vertex': | |
vertex_colors = _mesh.visual.vertex_colors | |
vertex_colors = np.array(vertex_colors[..., :3]).astype(np.float32) / 255 | |
mesh.vc = torch.tensor(vertex_colors, dtype=torch.float32, device=device) | |
print(f"[INFO] load trimesh: use vertex color: {mesh.vc.shape}") | |
elif _mesh.visual.kind == 'texture': | |
_material = _mesh.visual.material | |
if isinstance(_material, trimesh.visual.material.PBRMaterial): | |
if _material.baseColorTexture is not None: | |
texture = np.array(_material.baseColorTexture).astype(np.float32) / 255 | |
else: | |
# if there is no texture, init a uniform white texture by default | |
# TODO: support alpha blending mode when texture is RGBA | |
texture = np.ones((64, 64, 3), dtype=np.float32) | |
if _material.baseColorFactor is not None: | |
if isinstance(_material.baseColorFactor, np.ndarray): | |
texture = texture * (_material.baseColorFactor[:3] / 255) | |
# load metallicRoughness if present | |
if _material.metallicRoughnessTexture is not None: | |
metallicRoughness = np.array(_material.metallicRoughnessTexture).astype(np.float32) / 255 | |
# there could be metallicRoughness map with a single channel | |
if len(metallicRoughness.shape) == 2: | |
metallicRoughness = metallicRoughness[..., None].repeat(3, axis=-1) | |
else: | |
# init metallicRoughness if there is no predefined one | |
metallicRoughness = np.ones_like(texture, dtype=np.float32) | |
# pbr extension, metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1] | |
# there could be metallicRoughness map with a single channel | |
if len(metallicRoughness.shape) == 2: | |
metallicRoughness = metallicRoughness[..., None].repeat(3, axis=-1) | |
# we only apply metallicFactor and roughnessFactor to the asset without pbr maps | |
if _material.metallicFactor is not None: | |
metallicRoughness[..., 2] *= _material.metallicFactor | |
if _material.roughnessFactor is not None: | |
metallicRoughness[..., 1] *= _material.roughnessFactor | |
mesh.metallicRoughness = torch.tensor(metallicRoughness[..., :3], dtype=torch.float32, device=device).contiguous() | |
elif isinstance(_material, trimesh.visual.material.SimpleMaterial): | |
texture = np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255 | |
else: | |
raise NotImplementedError(f"material type {type(_material)} not supported!") | |
# there could be texture map with a single channel | |
if len(texture.shape) == 2: | |
texture = texture[..., None].repeat(3, axis=-1) | |
mesh.albedo = torch.tensor(texture[..., :3], dtype=torch.float32, device=device).contiguous() | |
# print(f"[INFO] load trimesh: load texture: {texture.shape}") | |
else: | |
texture = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5]) | |
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device) | |
print(f"[INFO] load trimesh: failed to load texture.") | |
vertices = _mesh.vertices | |
try: | |
texcoords = _mesh.visual.uv | |
# deal with repeated wrapping of texture which leads to uv coord larger than 1 | |
texcoords = texcoords - np.floor(texcoords) | |
texcoords[:, 1] = 1 - texcoords[:, 1] | |
except Exception as e: | |
# for textureless mesh, we map all texture coords to the first uv element | |
texcoords = torch.zeros(vertices.shape[0], 2).to(mesh.albedo) | |
try: | |
normals = _mesh.vertex_normals | |
except Exception as e: | |
normals = None | |
# trimesh only support vertex uv... | |
faces = tfaces = nfaces = _mesh.faces | |
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device) | |
mesh.vt = ( | |
torch.tensor(texcoords, dtype=torch.float32, device=device) | |
if texcoords is not None | |
else None | |
) | |
mesh.vn = ( | |
torch.tensor(normals, dtype=torch.float32, device=device) | |
if normals is not None | |
else None | |
) | |
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device) | |
mesh.ft = ( | |
torch.tensor(tfaces, dtype=torch.int32, device=device) | |
if texcoords is not None | |
else None | |
) | |
mesh.fn = ( | |
torch.tensor(nfaces, dtype=torch.int32, device=device) | |
if normals is not None | |
else None | |
) | |
return mesh | |
# sample surface (using trimesh) | |
def sample_surface(self, count: int): | |
"""sample points on the surface of the mesh. | |
Args: | |
count (int): number of points to sample. | |
Returns: | |
torch.Tensor: the sampled points, float [count, 3]. | |
""" | |
_mesh = trimesh.Trimesh(vertices=self.v.detach().cpu().numpy(), faces=self.f.detach().cpu().numpy()) | |
points, face_idx = trimesh.sample.sample_surface(_mesh, count) | |
points = torch.from_numpy(points).float().to(self.device) | |
return points | |
# aabb | |
def aabb(self): | |
"""get the axis-aligned bounding box of the mesh. | |
Returns: | |
Tuple[torch.Tensor]: the min xyz and max xyz of the mesh. | |
""" | |
return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values | |
# unit size | |
def auto_size(self, bound=0.9): | |
"""auto resize the mesh. | |
Args: | |
bound (float, optional): resizing into ``[-bound, bound]^3``. Defaults to 0.9. | |
""" | |
vmin, vmax = self.aabb() | |
self.ori_center = (vmax + vmin) / 2 | |
self.ori_scale = 2 * bound / torch.max(vmax - vmin).item() | |
self.v = (self.v - self.ori_center) * self.ori_scale | |
def auto_normal(self): | |
"""auto calculate the vertex normals. | |
""" | |
i0, i1, i2 = self.f[:, 0].long(), self.f[:, 1].long(), self.f[:, 2].long() | |
v0, v1, v2 = self.v[i0, :], self.v[i1, :], self.v[i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0) | |
# Splat face normals to vertices | |
vn = torch.zeros_like(self.v) | |
vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) | |
vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) | |
vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) | |
# Normalize, replace zero (degenerated) normals with some default value | |
vn = torch.where( | |
dot(vn, vn) > 1e-20, | |
vn, | |
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device), | |
) | |
vn = safe_normalize(vn) | |
self.vn = vn | |
self.fn = self.f | |
def auto_uv(self, cache_path=None, vmap=True): | |
"""auto calculate the uv coordinates. | |
Args: | |
cache_path (str, optional): path to save/load the uv cache as a npz file, this can avoid calculating uv every time when loading the same mesh, which is time-consuming. Defaults to None. | |
vmap (bool, optional): remap vertices based on uv coordinates, so each v correspond to a unique vt (necessary for formats like gltf). | |
Usually this will duplicate the vertices on the edge of uv atlas. Defaults to True. | |
""" | |
# try to load cache | |
if cache_path is not None: | |
cache_path = os.path.splitext(cache_path)[0] + "_uv.npz" | |
if cache_path is not None and os.path.exists(cache_path): | |
data = np.load(cache_path) | |
vt_np, ft_np, vmapping = data["vt"], data["ft"], data["vmapping"] | |
else: | |
import xatlas | |
v_np = self.v.detach().cpu().numpy() | |
f_np = self.f.detach().int().cpu().numpy() | |
atlas = xatlas.Atlas() | |
atlas.add_mesh(v_np, f_np) | |
chart_options = xatlas.ChartOptions() | |
# chart_options.max_iterations = 4 | |
atlas.generate(chart_options=chart_options) | |
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2] | |
# save to cache | |
if cache_path is not None: | |
np.savez(cache_path, vt=vt_np, ft=ft_np, vmapping=vmapping) | |
vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device) | |
ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device) | |
self.vt = vt | |
self.ft = ft | |
if vmap: | |
vmapping = torch.from_numpy(vmapping.astype(np.int64)).long().to(self.device) | |
self.align_v_to_vt(vmapping) | |
def align_v_to_vt(self, vmapping=None): | |
""" remap v/f and vn/fn to vt/ft. | |
Args: | |
vmapping (np.ndarray, optional): the mapping relationship from f to ft. Defaults to None. | |
""" | |
if vmapping is None: | |
ft = self.ft.view(-1).long() | |
f = self.f.view(-1).long() | |
vmapping = torch.zeros(self.vt.shape[0], dtype=torch.long, device=self.device) | |
vmapping[ft] = f # scatter, randomly choose one if index is not unique | |
self.v = self.v[vmapping] | |
self.f = self.ft | |
if self.vn is not None: | |
self.vn = self.vn[vmapping] | |
self.fn = self.ft | |
def to(self, device): | |
"""move all tensor attributes to device. | |
Args: | |
device (torch.device): target device. | |
Returns: | |
Mesh: self. | |
""" | |
self.device = device | |
for name in ["v", "f", "vn", "fn", "vt", "ft", "albedo", "vc", "metallicRoughness"]: | |
tensor = getattr(self, name) | |
if tensor is not None: | |
setattr(self, name, tensor.to(device)) | |
return self | |
def write(self, path): | |
"""write the mesh to a path. | |
Args: | |
path (str): path to write, supports ply, obj and glb. | |
""" | |
if path.endswith(".ply"): | |
self.write_ply(path) | |
elif path.endswith(".obj"): | |
self.write_obj(path) | |
elif path.endswith(".glb") or path.endswith(".gltf"): | |
self.write_glb(path) | |
else: | |
raise NotImplementedError(f"format {path} not supported!") | |
def write_ply(self, path): | |
"""write the mesh in ply format. Only for geometry! | |
Args: | |
path (str): path to write. | |
""" | |
if self.albedo is not None: | |
print(f'[WARN] ply format does not support exporting texture, will ignore!') | |
v_np = self.v.detach().cpu().numpy() | |
f_np = self.f.detach().cpu().numpy() | |
_mesh = trimesh.Trimesh(vertices=v_np, faces=f_np) | |
_mesh.export(path) | |
def write_glb(self, path): | |
"""write the mesh in glb/gltf format. | |
This will create a scene with a single mesh. | |
Args: | |
path (str): path to write. | |
""" | |
# assert self.v.shape[0] == self.vn.shape[0] and self.v.shape[0] == self.vt.shape[0] | |
if self.vt is not None and self.v.shape[0] != self.vt.shape[0]: | |
self.align_v_to_vt() | |
import pygltflib | |
f_np = self.f.detach().cpu().numpy().astype(np.uint32) | |
f_np_blob = f_np.flatten().tobytes() | |
v_np = self.v.detach().cpu().numpy().astype(np.float32) | |
v_np_blob = v_np.tobytes() | |
blob = f_np_blob + v_np_blob | |
byteOffset = len(blob) | |
# base mesh | |
gltf = pygltflib.GLTF2( | |
scene=0, | |
scenes=[pygltflib.Scene(nodes=[0])], | |
nodes=[pygltflib.Node(mesh=0)], | |
meshes=[pygltflib.Mesh(primitives=[pygltflib.Primitive( | |
# indices to accessors (0 is triangles) | |
attributes=pygltflib.Attributes( | |
POSITION=1, | |
), | |
indices=0, | |
)])], | |
buffers=[ | |
pygltflib.Buffer(byteLength=len(f_np_blob) + len(v_np_blob)) | |
], | |
# buffer view (based on dtype) | |
bufferViews=[ | |
# triangles; as flatten (element) array | |
pygltflib.BufferView( | |
buffer=0, | |
byteLength=len(f_np_blob), | |
target=pygltflib.ELEMENT_ARRAY_BUFFER, # GL_ELEMENT_ARRAY_BUFFER (34963) | |
), | |
# positions; as vec3 array | |
pygltflib.BufferView( | |
buffer=0, | |
byteOffset=len(f_np_blob), | |
byteLength=len(v_np_blob), | |
byteStride=12, # vec3 | |
target=pygltflib.ARRAY_BUFFER, # GL_ARRAY_BUFFER (34962) | |
), | |
], | |
accessors=[ | |
# 0 = triangles | |
pygltflib.Accessor( | |
bufferView=0, | |
componentType=pygltflib.UNSIGNED_INT, # GL_UNSIGNED_INT (5125) | |
count=f_np.size, | |
type=pygltflib.SCALAR, | |
max=[int(f_np.max())], | |
min=[int(f_np.min())], | |
), | |
# 1 = positions | |
pygltflib.Accessor( | |
bufferView=1, | |
componentType=pygltflib.FLOAT, # GL_FLOAT (5126) | |
count=len(v_np), | |
type=pygltflib.VEC3, | |
max=v_np.max(axis=0).tolist(), | |
min=v_np.min(axis=0).tolist(), | |
), | |
], | |
) | |
# append texture info | |
if self.vt is not None: | |
vt_np = self.vt.detach().cpu().numpy().astype(np.float32) | |
vt_np_blob = vt_np.tobytes() | |
albedo = self.albedo.detach().cpu().numpy() | |
albedo = (albedo * 255).astype(np.uint8) | |
albedo = cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR) | |
albedo_blob = cv2.imencode('.png', albedo)[1].tobytes() | |
# update primitive | |
gltf.meshes[0].primitives[0].attributes.TEXCOORD_0 = 2 | |
gltf.meshes[0].primitives[0].material = 0 | |
# update materials | |
gltf.materials.append(pygltflib.Material( | |
pbrMetallicRoughness=pygltflib.PbrMetallicRoughness( | |
baseColorTexture=pygltflib.TextureInfo(index=0, texCoord=0), | |
metallicFactor=0.0, | |
roughnessFactor=1.0, | |
), | |
alphaMode=pygltflib.OPAQUE, | |
alphaCutoff=None, | |
doubleSided=True, | |
)) | |
gltf.textures.append(pygltflib.Texture(sampler=0, source=0)) | |
gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT)) | |
gltf.images.append(pygltflib.Image(bufferView=3, mimeType="image/png")) | |
# update buffers | |
gltf.bufferViews.append( | |
# index = 2, texcoords; as vec2 array | |
pygltflib.BufferView( | |
buffer=0, | |
byteOffset=byteOffset, | |
byteLength=len(vt_np_blob), | |
byteStride=8, # vec2 | |
target=pygltflib.ARRAY_BUFFER, | |
) | |
) | |
gltf.accessors.append( | |
# 2 = texcoords | |
pygltflib.Accessor( | |
bufferView=2, | |
componentType=pygltflib.FLOAT, | |
count=len(vt_np), | |
type=pygltflib.VEC2, | |
max=vt_np.max(axis=0).tolist(), | |
min=vt_np.min(axis=0).tolist(), | |
) | |
) | |
blob += vt_np_blob | |
byteOffset += len(vt_np_blob) | |
gltf.bufferViews.append( | |
# index = 3, albedo texture; as none target | |
pygltflib.BufferView( | |
buffer=0, | |
byteOffset=byteOffset, | |
byteLength=len(albedo_blob), | |
) | |
) | |
blob += albedo_blob | |
byteOffset += len(albedo_blob) | |
gltf.buffers[0].byteLength = byteOffset | |
# append metllic roughness | |
if self.metallicRoughness is not None: | |
metallicRoughness = self.metallicRoughness.detach().cpu().numpy() | |
metallicRoughness = (metallicRoughness * 255).astype(np.uint8) | |
metallicRoughness = cv2.cvtColor(metallicRoughness, cv2.COLOR_RGB2BGR) | |
metallicRoughness_blob = cv2.imencode('.png', metallicRoughness)[1].tobytes() | |
# update texture definition | |
gltf.materials[0].pbrMetallicRoughness.metallicFactor = 1.0 | |
gltf.materials[0].pbrMetallicRoughness.roughnessFactor = 1.0 | |
gltf.materials[0].pbrMetallicRoughness.metallicRoughnessTexture = pygltflib.TextureInfo(index=1, texCoord=0) | |
gltf.textures.append(pygltflib.Texture(sampler=1, source=1)) | |
gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT)) | |
gltf.images.append(pygltflib.Image(bufferView=4, mimeType="image/png")) | |
# update buffers | |
gltf.bufferViews.append( | |
# index = 4, metallicRoughness texture; as none target | |
pygltflib.BufferView( | |
buffer=0, | |
byteOffset=byteOffset, | |
byteLength=len(metallicRoughness_blob), | |
) | |
) | |
blob += metallicRoughness_blob | |
byteOffset += len(metallicRoughness_blob) | |
gltf.buffers[0].byteLength = byteOffset | |
# set actual data | |
gltf.set_binary_blob(blob) | |
# glb = b"".join(gltf.save_to_bytes()) | |
gltf.save(path) | |
def write_obj(self, path): | |
"""write the mesh in obj format. Will also write the texture and mtl files. | |
Args: | |
path (str): path to write. | |
""" | |
mtl_path = path.replace(".obj", ".mtl") | |
albedo_path = path.replace(".obj", "_albedo.png") | |
metallic_path = path.replace(".obj", "_metallic.png") | |
roughness_path = path.replace(".obj", "_roughness.png") | |
v_np = self.v.detach().cpu().numpy() | |
vt_np = self.vt.detach().cpu().numpy() if self.vt is not None else None | |
vn_np = self.vn.detach().cpu().numpy() if self.vn is not None else None | |
f_np = self.f.detach().cpu().numpy() | |
ft_np = self.ft.detach().cpu().numpy() if self.ft is not None else None | |
fn_np = self.fn.detach().cpu().numpy() if self.fn is not None else None | |
with open(path, "w") as fp: | |
fp.write(f"mtllib {os.path.basename(mtl_path)} \n") | |
for v in v_np: | |
fp.write(f"v {v[0]} {v[1]} {v[2]} \n") | |
if vt_np is not None: | |
for v in vt_np: | |
fp.write(f"vt {v[0]} {1 - v[1]} \n") | |
if vn_np is not None: | |
for v in vn_np: | |
fp.write(f"vn {v[0]} {v[1]} {v[2]} \n") | |
fp.write(f"usemtl defaultMat \n") | |
for i in range(len(f_np)): | |
fp.write( | |
f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \ | |
{f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \ | |
{f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n' | |
) | |
with open(mtl_path, "w") as fp: | |
fp.write(f"newmtl defaultMat \n") | |
fp.write(f"Ka 1 1 1 \n") | |
fp.write(f"Kd 1 1 1 \n") | |
fp.write(f"Ks 0 0 0 \n") | |
fp.write(f"Tr 1 \n") | |
fp.write(f"illum 1 \n") | |
fp.write(f"Ns 0 \n") | |
if self.albedo is not None: | |
fp.write(f"map_Kd {os.path.basename(albedo_path)} \n") | |
if self.metallicRoughness is not None: | |
# ref: https://en.wikipedia.org/wiki/Wavefront_.obj_file#Physically-based_Rendering | |
fp.write(f"map_Pm {os.path.basename(metallic_path)} \n") | |
fp.write(f"map_Pr {os.path.basename(roughness_path)} \n") | |
if self.albedo is not None: | |
albedo = self.albedo.detach().cpu().numpy() | |
albedo = (albedo * 255).astype(np.uint8) | |
cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR)) | |
if self.metallicRoughness is not None: | |
metallicRoughness = self.metallicRoughness.detach().cpu().numpy() | |
metallicRoughness = (metallicRoughness * 255).astype(np.uint8) | |
cv2.imwrite(metallic_path, metallicRoughness[..., 2]) | |
cv2.imwrite(roughness_path, metallicRoughness[..., 1]) | |