3DTopia-XL / app.py
FrozenBurning
dev notes
ae08466
raw
history blame
12.7 kB
import os
import imageio
import numpy as np
os.system("bash install.sh")
from omegaconf import OmegaConf
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import rembg
import gradio as gr
from gradio_litmodel3d import LitModel3D
from dva.io import load_from_config
from dva.ray_marcher import RayMarcher
from dva.visualize import visualize_primvolume, visualize_video_primvolume
from inference import remove_background, resize_foreground, extract_texmesh
from models.diffusion import create_diffusion
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_sview_dit_fp16.pt")
vae_ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_vae_fp16.pt")
GRADIO_PRIM_VIDEO_PATH = 'prim.mp4'
GRADIO_RGB_VIDEO_PATH = 'rgb.mp4'
GRADIO_MAT_VIDEO_PATH = 'mat.mp4'
GRADIO_GLB_PATH = 'pbr_mesh.glb'
CONFIG_PATH = "./configs/inference_dit.yml"
config = OmegaConf.load(CONFIG_PATH)
config.checkpoint_path = ckpt_path
config.model.vae_checkpoint_path = vae_ckpt_path
# model
model = load_from_config(config.model.generator)
state_dict = torch.load(config.checkpoint_path, map_location='cpu')
model.load_state_dict(state_dict['ema'])
vae = load_from_config(config.model.vae)
vae_state_dict = torch.load(config.model.vae_checkpoint_path, map_location='cpu')
vae.load_state_dict(vae_state_dict['model_state_dict'])
conditioner = load_from_config(config.model.conditioner)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vae = vae.to(device)
conditioner = conditioner.to(device)
model = model.to(device)
model.eval()
amp = True
precision_dtype = torch.float16
rm = RayMarcher(
256,
256,
**config.rm,
).to(device)
perchannel_norm = False
if "latent_mean" in config.model:
latent_mean = torch.Tensor(config.model.latent_mean)[None, None, :].to(device)
latent_std = torch.Tensor(config.model.latent_std)[None, None, :].to(device)
assert latent_mean.shape[-1] == config.model.generator.in_channels
perchannel_norm = True
latent_nf = config.model.latent_nf
config.diffusion.pop("timestep_respacing")
config.model.pop("vae")
config.model.pop("vae_checkpoint_path")
config.model.pop("conditioner")
config.model.pop("generator")
config.model.pop("latent_nf")
config.model.pop("latent_mean")
config.model.pop("latent_std")
model_primx = load_from_config(config.model)
# load rembg
rembg_session = rembg.new_session()
# background removal function
def background_remove_process(input_image):
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
input_cond_preview_pil = input_image
raw_image = np.array(input_image)
mask = (raw_image[..., -1][..., None] > 0) * 1
raw_image = raw_image[..., :3] * mask
input_cond = torch.from_numpy(np.array(raw_image)[None, ...]).to(device)
return gr.update(interactive=True), input_cond, input_cond_preview_pil
# process function
def process(input_cond, input_num_steps, input_seed=42, input_cfg=6.0):
# seed
torch.manual_seed(input_seed)
os.makedirs(config.output_dir, exist_ok=True)
output_rgb_video_path = os.path.join(config.output_dir, GRADIO_RGB_VIDEO_PATH)
output_prim_video_path = os.path.join(config.output_dir, GRADIO_PRIM_VIDEO_PATH)
output_mat_video_path = os.path.join(config.output_dir, GRADIO_MAT_VIDEO_PATH)
respacing = "ddim{}".format(input_num_steps)
diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion)
sample_fn = diffusion.ddim_sample_loop_progressive
fwd_fn = model.forward_with_cfg
# text-conditioned
if input_cond is None:
raise NotImplementedError
with torch.no_grad():
latent = torch.randn(1, config.model.num_prims, 1, 4, 4, 4)
batch = {}
inf_bs = 1
inf_x = torch.randn(inf_bs, config.model.num_prims, 68).to(device)
y = conditioner.encoder(input_cond)
model_kwargs = dict(y=y[:inf_bs, ...], precision_dtype=precision_dtype, enable_amp=amp)
if input_cfg >= 0:
model_kwargs['cfg_scale'] = input_cfg
for samples in sample_fn(fwd_fn, inf_x.shape, inf_x, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device):
final_samples = samples
recon_param = final_samples["sample"].reshape(inf_bs, config.model.num_prims, -1)
if perchannel_norm:
recon_param = recon_param / latent_nf * latent_std + latent_mean
recon_srt_param = recon_param[:, :, 0:4]
recon_feat_param = recon_param[:, :, 4:] # [8, 2048, 64]
recon_feat_param_list = []
# one-by-one to avoid oom
for inf_bidx in range(inf_bs):
if not perchannel_norm:
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]) / latent_nf)
else:
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]))
recon_feat_param_list.append(decoded.detach())
recon_feat_param = torch.concat(recon_feat_param_list, dim=0)
# invert normalization
if not perchannel_norm:
recon_srt_param[:, :, 0:1] = (recon_srt_param[:, :, 0:1] / 10) + 0.05
recon_feat_param[:, 0:1, ...] /= 5.
recon_feat_param[:, 1:, ...] = (recon_feat_param[:, 1:, ...] + 1) / 2.
recon_feat_param = recon_feat_param.reshape(inf_bs, config.model.num_prims, -1)
recon_param = torch.concat([recon_srt_param, recon_feat_param], dim=-1)
visualize_video_primvolume(config.output_dir, batch, recon_param, 15, rm, device)
prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
return output_rgb_video_path, output_prim_video_path, output_mat_video_path, prim_params
def export_mesh(prim_params, uv_unwrap="Faster", remesh="No", mc_resolution=256):
# exporting GLB mesh
output_glb_path = os.path.join(config.output_dir, GRADIO_GLB_PATH)
if remesh == "No":
config.inference.remesh = False
elif remesh == "Yes":
config.inference.remesh = True
if uv_unwrap == "Faster":
config.inference.fast_unwrap = True
elif uv_unwrap == "Better":
config.inference.fast_unwrap = False
config.inference.mc_resolution = mc_resolution
config.inference.batch_size = 8192
model_primx.load_state_dict(prim_params)
model_primx.to(device)
model_primx.eval()
with torch.no_grad():
model_primx.srt_param[:, 1:4] *= 0.85
extract_texmesh(config.inference, model_primx, config.output_dir, device)
return output_glb_path, gr.update(visible=True), gr.update(interactive=True), gr.update(value="assets/hdri/metro_noord_1k.hdr")
# gradio UI
_TITLE = '''3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://frozenburning.github.io/projects/3DTopia-XL/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/3DTopia-XL"><img src='https://img.shields.io/github/stars/3DTopia/3DTopia-XL?style=social'/></a>
</div>
* Now we offer 1) single image conditioned model, we will release 2) multiview images conditioned model and 3) pure text conditioned model in the future!
* If you find the output unsatisfying, try using different seeds!
'''
_DEV_DES = '''
* Please refer to our repo for instructions on running gradio demo [locally](https://github.com/3DTopia/3DTopia-XL?tab=readme-ov-file#gradio-demo) or [CLI test](https://github.com/3DTopia/3DTopia-XL?tab=readme-ov-file#cli-test)
'''
block = gr.Blocks(title=_TITLE).queue()
with block:
current_fg_state = gr.State()
prim_param_state = gr.State()
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Accordion("For Developers", open=False):
gr.Markdown(_DEV_DES)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
with gr.Row():
# input image
input_image = gr.Image(label="image", type='pil')
# background removal
removal_previewer = gr.Image(label="Background Removal Preview", type='pil', interactive=False)
with gr.Row():
# inference steps
input_num_steps = gr.Radio(choices=[25, 50, 100, 200], label="DDIM steps", value=25, info="Larger for robustness but slower.")
# random seed
input_cfg = gr.Slider(label="CFG scale", minimum=0, maximum=15, step=0.5, value=6, info="Typically CFG in a range of 4-7")
# random seed
input_seed = gr.Slider(label="random seed", minimum=0, maximum=10000, step=1, value=42, info="Try different seed if the result is not satisfying as this is a generative model!")
with gr.Row():
input_mc_resolution = gr.Radio(choices=[128, 256], label="MC Resolution", value=128, info="Cube resolution for mesh extraction. Larger for better quality but slower.")
input_remesh = gr.Radio(choices=["No", "Yes"], label="Remesh", value="No", info="Remesh or not?")
input_unwrap = gr.Radio(choices=["Faster", "Better"], label="UV Unwrap", value="Better", info="UV unwrapping algorithm. Trade-off between quality and speed.")
# gen button
with gr.Row():
button_gen = gr.Button(value="Generate", interactive=False)
export_glb_btn = gr.Button(value="Export Current GLB", interactive=False)
with gr.Column(scale=1):
with gr.Row():
# final video results
output_rgb_video = gr.Video(label="RGB")
output_prim_video = gr.Video(label="Primitives")
output_mat_video = gr.Video(label="Material")
with gr.Row():
# glb file
output_glb = LitModel3D(
label="3D GLB Model",
visible=True,
clear_color=[0.0, 0.0, 0.0, 0.0],
camera_position=(90, None, None),
tonemapping="aces",
contrast=1.0,
scale=1.0,
)
with gr.Column(visible=False, scale=1.0) as hdr_row:
gr.Markdown("""## HDR Environment Map
Select / Upload an HDR environment map to relight the 3D model.
""")
with gr.Row():
example_hdris = [
os.path.join("assets/hdri", f)
for f in os.listdir("assets/hdri")
]
hdr_illumination_file = gr.File(
label="HDR Envmap", file_types=[".hdr"], file_count="single"
)
hdr_illumination_example = gr.Examples(
examples=example_hdris,
inputs=hdr_illumination_file,
)
hdr_illumination_file.change(
lambda x: gr.update(env_map=x.name if x is not None else None),
inputs=hdr_illumination_file,
outputs=[output_glb],
)
input_image.change(background_remove_process, inputs=[input_image], outputs=[button_gen, current_fg_state, removal_previewer])
button_gen.click(process, inputs=[current_fg_state, input_num_steps, input_seed, input_cfg], outputs=[output_rgb_video, output_prim_video, output_mat_video, prim_param_state])
prim_param_state.change(export_mesh, inputs=[prim_param_state, input_unwrap, input_remesh, input_mc_resolution], outputs=[output_glb, hdr_row, export_glb_btn, hdr_illumination_file])
export_glb_btn.click(export_mesh, inputs=[prim_param_state, input_unwrap, input_remesh, input_mc_resolution], outputs=[output_glb, hdr_row, export_glb_btn, hdr_illumination_file])
gr.Examples(
examples=[
os.path.join("assets/examples", f)
for f in os.listdir("assets/examples")
],
inputs=[input_image],
outputs=[output_rgb_video, output_prim_video, output_mat_video, prim_param_state],
fn=lambda x: process(input_image=x),
cache_examples=False,
label='Single Image to 3D PBR Asset'
)
block.launch(server_name="0.0.0.0", share=True)